|
[1] F. A. Chudak, D. B. Shmoys. Improved approximation algorithms for a capacitated facility location problem. In Proc. the 10th ACM-SIAM Symposium on Discrete Algorithms(SODA), 1999, pp. 875-876. [2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, V. Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 2004, pp. 544-562. [3] A. Aggarwal, A. Louis, M. Bansal, N. Garg, N. Gupta, S. Gupta, and S. Jain. A 3-approximation algorithm for the facility location problem with uniform capacities. Math. Program., Vol. 141, Issue 1, 2013, pp. 527-547. [4] F. A. Chudak, D.P. Williamson. Improved approximation algorithms for capacitated facility location problems. Math. Program. 102(2), 2005, pp. 207-222. [5] A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees. Journal of the ACM (JACM), Vol. 54, Issue 3, No. 13 , 2007. [6] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log n) update time. SIAM J. Comput. 44(2015), no. 1, pp. 88-113. [7] S. Bhattacharya, D. Chakrabarty, and M. Henzinger. Fully dynamic approximate maximum matching and minimum vertex cover in O(log3n) worst case update time. In Proc. the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), Barcelona, Spain, 2017, pp. 470-489. [8] S. Bhattacharya, D. Chakrabarty, and M. Henzinger. Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time. In Proc. the 19th Conference on Integer Programming and Combinatorial Optimization (IPCO), Waterloo, Canada, 2017. [9] M. Bansal, N. Garg, and N. Gupta. A 5-Approximation for capacitated facility location. In Proc. the 20th European Symposium on Algorithms(ESA), 2012, pp. 133-144. [10] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic data structures for vertex cover and matching. In Proc. the 26th ACM-SIAM Symposium on Discrete Algorithms (SODA), Philadelphia, USA, 2015, pp. 785-804. [11] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Design of dynamic algorithms via primal-dual method. In Proc. the 42nd International Colloquiumon Automata, Languages, and Programming (ICALP), Heidelberg, Germany 2015, pp. 206-218. [12] D. B. Shmoys, E. Tardos, K. Aardal. Approximation algorithms for facility location problems. In: Proceedings of 29th ACM Symposium on Theory of Computing, 1997, pp. 265-274. [13] R. Chen, S. AhmadBeygi, D.R. Beil, A. Cohn, and A. Sinha. Solving truckload procurement auctions over an exponential number of bundles. Forthcoming in Transportation Science, 2009. [14] M. Charikar, S. Guha. Improved combinatorial algorithms for facility location and k-median problems. In Proc. the 40th IEEE Symposium of Foundations of Computer Science(FOCS), 1999, pp. 378-388. [15] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. Journal of the ACM (JACM), Vol. 51, Issue 6, 2004, pp. 968-992. [16] L. de Boer, E. Labro, and P. Morlacchi. A review of methods supporting supplier selection. European Journal of Purchasing and Supply Management, 2001, pp. 75-89. [17] D. R. Beil. Supplier Selection, in Wiley Encyclopedia of Operations Research and Management Science, no. July, J. J. Cochran, Ed. John Wiley and Sons, Inc, 2010, pp. 1-13. [18] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex covering. Journal of Algorithms, Vol. 48, Issue 1, August 2003, pp. 257-270. [19] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algorithms for set cover. In Proc. the 49th ACM Symposium on Theory of Computing (STOC), Montreal, Canada, 2017. [20] D. Ghawai and G.P. Scheider. New approaches to online procurement. In Proc. the Academy of Information and Management Sciences, vol. 8(2), 2004, pp. 25-28. [21] F. Hedderich, R. Giesecke, and D. Ohmsen. Identifying and evaluating Chinese suppliers: China sourcing practices of german manufacturing companies. Practix, vol. 9, 2006, pp. 1-8. [22] M. T. J. Holm, K. de. Lichtenberg. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM (JACM) Vol. 48 Issue 4, 2001, pp. 723-760. [23] Z. Ivkovic and E. L. Lloyd. Fully dynamic maintenance of vertex cover. In Proc. the 19th International Workshop on Graph-theoretic Concepts in Computer Science (WG), London, UK, 1994, pp 99-111. [24] K. Jain, M. Mahdian, A. Saberi. A new greedy approach for facility location problems. In Proc. the 34th ACM Symposium on Theory of Computing(STOC), 2002, pp. 731-740. [25] K. Jain, V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 2001, pp. 274-296. [26] M. Korupolu, C. Plaxton, R. Rajaraman. Analysis of a local search heuristic for facility location problems. J. Algorithms 37(1), 2000, pp. 146-188. [27] R. Levi, D.B. Shmoys, C. Swamy. LP-based approximation algorithms for capacitated facility location. In Proc. the 10th Conference on Integer Programming and Combinatorial Optimization(IPCO), 2004, pp. 206-218. [28] J. Lynn Lunsford and Paul Glader. Boeings nuts-and-bolts problem; Shortage of fasteners tests ability to nish dreamliners. Wall Street Journal, page A8, June 19, 2007. [29] L.M. Ellram. Total cost modeling in purchasing. Center for Advanced Purchasing Studies, 1994. [30] M. K. S. Bhutta. Supplier selection problem: Methodology literature review Journal of International Technology and Information Management Vol. 12, Issue 2, 2003, pp. 53-72. [31] M. Mahdian, M. Pal. Universal facility location. In Proc. the 11th European Symposium on Algorithms(ESA), 2003, pp. 409-421. [32] M. Mahdian, Y. Ye, J. Zhang. Approximation algorithms for metric facility location problems. SIAM J. Comput. 36(2), 2006, pp. 411-432. [33] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal matching. In Proc. the 45th ACM Symposium on Theory of Computing (STOC), Palo Alto, USA, 2013, pp. 745-754. [34] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In Proc. the 42nd ACM Symposium on Theory of Computing (STOC), Cambridge, USA, 2010, pp. 457-464. [35] D. Peleg and S. Solomon. Dynamic (1+ϵ)-approximate matchings: a density-sensitive approach. In Proc. the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), Virginia, USA, 2015, pp. 712-729. [36] M. Pal, E. Tardos, T. Wexler. Facility location with nonuniform hard capacities. In Proc. the 42th Symposium of Foundations of Computer Science(FOCS), 2001, pp. 329-338. [37] A.P. Kontis, V.Vrysagotis, Supplier selection problem: a literature review of multi criteria approaches based on DEA. Advances in Management and Applied Economics, vol. 1, no. 2, 2011, pp. 207-219. [38] R. Myers. Food ghts. CFO Magazine, June, 2007. [39] S. Solomon. Fully dynamic maximal matching in constant update time. In Proc. the 57th Symposium on Foundations of Computer Science (FOCS), New Jersey, USA, 2016, pp. 325-334. [40] W. Thanaraksakul and B. Phruksaphanrat. Supplier evaluation framework based on balanced scorecard with integrated corporate social responsibility perspective. In Proc. the International Multi Conference of Engineers and Computer Scientists Vol 2, Hong Kong, March 18-20, 2009. [41] U.S. Census Bureau. Statistics for industry groups and industries: 2005. Technical Report M05(AS)-1, U.S. Census Bureau, November 2006. Annual Survey of Manufactures. [42] J. Zhang, B. Chen, Y. Ye. A multi-exchange local search algorithm for the capacitated facility location problem. Math. Oper. Res. 30(2), 2005, pp. 389-403.
|