帳號:guest(54.158.198.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:柯昱明
作者(外文):Yu-ming Ko
論文名稱:三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用
論文名稱(外文):Developing of 3D Bi-Viscous Model and Applied on the Hyperconcentrated Sediment Flow and the Scouring Problem
指導教授:吳祚任
指導教授(外文):Tso-ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:996206012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:高濃度泥沙流山崩局部沖刷賓漢流模式多相流流變模式流體體積法
外文關鍵詞:local scourlandslidehyperconcentrated sediment flowsmultiphase rheological modelsVOFBingham model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
豪雨或颱風降雨造成之高濃度泥沙流(Hyperconcentrated Sediment Flow),如土石流(Debris Flow)、泥流(Mudflow)及挾帶大量泥沙之洪流(Mud Flood),常導致人命傷亡及建築物、橋梁、公共建設毀損。此外海嘯湧潮(Bore)及大雨來襲後形成之洪水亦會於海堤、房屋等結構物周圍產生局部沖刷災害。本研究旨在發展一三維多相流變模式,結合賓漢雙黏性流流變模式之NS-VOF數值模式,以描述上述問題之流場行為。
於局部沖刷問題之部份,本研究中以賓漢流變模式降伏應力,及流體之黏滯性參數描述泥沙受水流沖刷之運動行為。本流變模式與Bird et al.(1983)所推導之賓漢流解析解驗證結果相當符合,證明本模式於程式發展有高度正確性。其後將本模式用於模擬雙園橋倒塌案例,該案例之底床為泥質底床,模擬結果與實測沖刷深度亦有相當良好之一致性。然而真實情形中之底床常包含粒徑較大之泥沙,越往河川上游底床所含大顆粒之泥沙比例越高,此時以傳統賓漢流體之概念進行模擬之準確性便會下降。為解決此問題,本研究於賓漢雙黏性流模式導入顆粒碰撞之效應,並以水流沖刷半圓形橋墩周圍沙質底床之實驗為驗證對象。模擬結果顯示導入顆粒碰撞項後,模式可更精準描述於結構物周圍沙質底床之沖刷坑發展及下游方堆積之高度與型態。
此外本文亦探討模式於高濃度泥沙流問題之應用。本研究以1989年Liu與Mei 推導出之斜板上賓漢流理論解進行驗證,證明本模式可精準模擬泥流之現象,並將此模式應用於1966年德州石膏尾礦潰壩之真實案例,模擬結果之流況、流體堆積之分佈、型態及距離皆與實例照片及觀測提供之數據相當接近。其後藉由模式結果進一步分析此案例中賓漢流體之流動行為,包含流速、強剪區與弱剪區之分布等,由模式結果中可以清楚看出賓漢流體於強剪區及弱剪區之分布情形及與速度之關係,此案例之結果顯示本模式可模擬複雜之三維高濃度泥沙流問題,並可藉由模擬結果更加了解賓漢流體之運動特性。
Hyperconcentrated sediment flows, such as debris flows, mudflows, and mud floods, induced by heavy rainfalls or typhoons frequently cause live losses and damages on structures. In addition, tsunami bores or river floods may result in sever local scour. The present study aims at developing a 3D multi-phase rheological model that incorporates Bingham bi-viscous model to characterize flow fields in the above-mentioned scenarios.
Regarding the issue of local scour, the present study adopts the parameters of Bingham yield stress and Bingham viscosity in the rheological model to describe the fluid motions around the structures. We validate the numerical model with the analytical solution derived by Bird et al.(1993). Highly consistency can be observed. We then implement this model to simulate the failure of Shuang-Yuan bridge. Muddy riverbed is applied. Good agreement can be seen in terms of the scour depth. However, the constitution of riverbed changes toward the upstream direction with large grain size which cannot fully describe by the Bingham model. For this, we present a quadratic rheological model to incorporate the effect of particle collision. The quadratic rheological model is validated by simulating the local scour around a semicircular abutment with sandy bed. The result shows that the model is capable of describing not only the scour profile around the cylinder, but also the sediment deposition in the downstream area.
As for the hyperconcentrated sediment flows, we study the mudflow on an incline plane. The result is validated with the theoretical solution and experimental measurement provided by Liu and Mei(1989). Very good agreement can be seen. We then apply our model to simulate one real case, 1966 dam break of gypsum tailing in Texas. Our simulation result presents very good agreement in terms of the flooding distance, propagation ceasing time, and propagation speed. We also find that our result presents many detail appearances of the stopped gypsum which are extremely close to those observed on the historical photo. We further analyze the flow characteristics, such as the time-dependence shear and plug areas, which can rarely be seen in the literatures. We concluded that the newly developed rheological model is capable of simulating complex hyperconcentrated sediment flows as well as the local scour problems.
摘 要I
AbstractIII
誌 謝V
目 錄VI
圖目錄VIII
表目錄XI
第一章緒論1
1-1研究動機1
1-2本文架構3
第二章文獻回顧4
2-1泥流型土石流文獻4
2-2沖刷研究文獻6
第三章研究方法與模式介紹11
3-1賓漢流理論11
3-2模式介紹14
第四章模式驗證17
4-1賓漢流解析解驗證17
4-2斜板上賓漢流理論解及實驗驗證21
4-3沖刷坑驗證25
第五章泥流潰壩案例模擬與分析37
5-1模式設定37
5-2模擬結果42
第六章沖刷模式之發展與案例討論73
6-1顆粒碰撞效應之影響與參數設定73
6-2含顆粒碰撞效應之模擬結果76
6-3參數校正方法之討論82
第七章結論與建議90
7-1結論90
7-2建議91
參考文獻92
附錄A 模式數值方法99
A.1有限體積法99
A.2流體體積法100
附錄B 口試書面答覆表103
[1] Armanini A., Michiue M.(Eds.), “Recent developments on debris flows”, Springer, 1997.
[2] Assier-Rzadkiewicz, S., Mariotti, C., and Heinrich, P., “Numerical Simulation of Submarine Landslides and their hydraulic effects”, J. waterway, port, Coastal and Ocean Engineering, Vol. 123, No. 4, pp. 149-157, 1997.
[3] Bagnold, R. A., “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc., Royal Society of London, series A, Vol. 225, pp. 49-63, 1954.
[4] Bird, R. B., Dai, G. C., and Yarusso, B. J., “The rheology and flow of viscoplastic materials”, Rev of Chemical Engrg., Vol. 1, No. 1, pp. 1-70, 1983.
[5] Borrero, J., Yeh H., Peterson, C., Chadha, R. K., Latha, G. and Katada, T., “Learning from earthquakes: The great Sumatra earthquake and Indian Ocean tsunami of December 26, 2004”, EERI Special Earthquake Report, 2005.
[6] Bost, C., Cottet, G. H., and Maitre, E., “Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid”, SIAM Journal on Numerical Analysis, Vol. 48, pp. 1313-1337, 2010.
[7] Brørs, B., “Numerical modeling of flow and scour at pipelines”, J. Hydr. Eng. Vol. 125, pp. 511–523, 1999.
[8] Chen, S. C. and Peng S. H., “Two-dimensional numerical model of two-layer shallow water equations for confluence simulation”, Advances in Water Resources, vol. 29, pp. 1608-1617, 2006.
[9] Chen, S. C. and Peng S. H., “Two-layer shallow water computation of mud flow intrusions into quiescent water”, Journal of Hydraulic Research, Vol. 45, No. 1 pp. 13-25, 2007.
[10] Dey, S., and Barbhuiya, A. K., “Turbulent flow field in a scour hold at a semicircular abutment”, Can. J. Eng., Vol. 32, pp. 213-232, 2005.
[11] Ettema, R., Kirkil, G. and Muste, M., “Similitude of large-scale turbulence in experiments on local scour at cylinders”, Journal of Hydraulic Engineering, ASCE Vol. 132, No. 1, pp. 33–40, 2006.
[12] Feng, Z. Y., “The seismic signatures of the surge wave from 2009 Xiaolin landslide-dam breach in Taiwan”, Hydrological Processes, Vol.26, pp.1342-1351, 2012.
[13] Hirt, C. W. and Nichols, B. D., “Volume of Fluid(VOF) method for the dynamics of free surface boundaries”, J. Comput. Phys., pp.201-225, 1981.
[14] Hsu, C. A., “Application of Depth-averaged Two-dimensional Numerical Models to Dam Break Flows,” Abstract of XXXI IAHR Congress, Korea, pp. 755-756, 2005.
[15] Huang, X. and Garcia, M. H., “A Herschal-Bulkley model for mud flow down a slope”, J. Fluid Mech., Vol. 374, pp. 305-333, 1998.
[16] Hungr, O. et al., “A review of the classification of landslide of the flow type”, Environmental and Engineering Geoscience, Vol. 7, No. 3, pp.221-238, 2001.
[17] Jeyapalan J. K. et al., “Investigation of Flow Failures of Tailings Dams”, Journal of Geotechnical Engineering, Vol. 109, No. 2, pp. 172-189, 1983.
[18] Julien, P. Y. and Lan, Y., “Rheology of hyperconcentrations”, J. Hydraul. Eng. ASCE, Vol. 117, pp. 346-353, 1991.
[19] Julien, Pierre Y. and Claudia A. Leon S., “Mud Floods, mudflows and debris flows classfication, rheology and structural design” Jornadas de Investigación, 2000.
[20] Julien, Pierre Y. and Paris, A., “Mean velocity of mudflows and debris flows” Journal of hydraulic engineergin, 2010.
[21] Khosronejad A. et al., “Experimental and computational investigation of local scour around bridge piers”, Advances in Water Resources, Vol. 37, pp. 73-85, 2012.
[22] Lee, S. O., Sturm, T., “Scaling issues for laboratory modeling of bridge pier scour.”, Procedding of 4th International Conference on Scour and Erosion, 5–7 Nov., pp. 111–115, Tokyo, Japan, 2008.
[23] Liu, P. L. F., Wu, T. R., Raichlen, Synolakis, C. E. and Borrero, J. C., “Runup and rundown generated by three-dimensional sliding masses” , J. Fluid Mech, pp. 107-144, 2005.
[24] Liu, K. F. and Mei, C.C., “Slow spreading of a sheet of Bingham fluid on an inclined plane” , J. Fluid Mech. Vol. 207, pp. 505-529, 1989.
[25] Liu, X. F. and García, M. H., “A three-dimensional numerical model with free water surface and mesh deformation for local sediment scour” , Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 4, pp. 203-217, 2008.
[26] Liu, X. F. and García, M. H., “Computational fluid dynamics modeling for the design of large primary settling tanks” , Journal of Hydraulic Engineering, Vol. 137, No. 3, pp. 343-355, 2011.
[27] MacArthur, R. C., and Schamber, D. R., “Numerical methods for simulating mudflows.” Proc., 3rd Int. Symp. on River Sedimentation, Univ. of Mississippi, Oxford, Miss., pp. 1615-1623, 1986.
[28] Melville, B. W., and Raudkivi, A. J., “Flow characteristics in local scour at bridge piers” , Journal of Hydraulic Research, Vol. 15, No. 4, pp. 373-380, 1977.
[29] Melville, B. W., “Local scour at bridge abutments,” J. Hydraulic Division, ASCE, Vol. 118, No. 4, pp. 615-631, 1992.
[30] Mei, C. C. and Yuhi, M., “Slow flow of a Bingham fluid in a shallow channel of finite width” , J. Fluid Mech., Vol. 431, pp. 135-159, 2001.
[31] O’Brien, J. S., and Julien, P. Y., “Physical properties and mechanics of hyperconcentrated sediment flows.” Proc. of the Specialty Conference on Delineation of Landslides, Flash Flood and Debris Flow Hazards in Utah, Utah Water Research Laboratory, pp. 260-279, 1985.
[32] O’Brien, J. S. et al., “Two dimensional water flood and mudflow simulation”, Journal of Hydraulic Engineering, Vol. 119, No.2, pp. 244-261, 1993.
[33] O’Brien, J. S. and Julien, P. Y., “On the importance of mudflow routing”, Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, Aug. 16-18, pp. 677-686, 2000.
[34] Olsen, N. R. B., and Melaaen, M. C., “Three-dimensional calculation of scour around cylinder”, J. Hydraul. Eng., Vol. 119, No. 9, pp. 1048-1054, 1993.
[35] Olsen, N. R. B., and Kjellesvig, H. M., “Three-dimensional numerical flow modeling for estimation of maximum local scour depth”, J. Hydraul. Res., Vol. 36, No. 4, pp. 579-590, 1998.
[36] Randrianarivelo, N., Pianet, G., Vincent, S., and Caltagirone, J. P., “Numerical modelling of solid particle motion using a new penalty method,”International Journal for Numerical Methods in Fluids, Vol. 47, pp. 1245-1251, 2005.
[37] Richardson, J. E. and Panchang, V.G., “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Eng., Vol. 124, No. 5, pp. 530-540, 1998.
[38] Santolo, A. S., Pellegrino, A. M., and Evangelista, A., “Experimental study on the rheological behavior of debris flow.”, Nat. Hazards Earth Syst. Sci., Vol. 10, pp. 2507-2514, 2010.
[39] Schamber, D. R., and MacArthur, R. C., ”One-dimensional model for mudflows.” Proc., ASCE specialty conference on hydr. and hydro. in the small comp. age. Vol. 2, ASCE, New York, N.Y., pp. 1334-1339, 1985.
[40] Sosio, R., Crosta, G. B., Frattini, P., “Field observations, rheological testing and numerical modeling of a debris-flow event.”, Earth Surface Process and Landforms, Vol. 32, pp. 290-306, 2007.
[41] Sumer, B. M., and Fredsøe, J., “Wave scour around a large vertical circular cylinder.” J. Waterway, Port, Coastal, Ocean Eng., Vol. 127(3), pp. 125–134, 2001.
[42] Wang, M. H., “Analysis on Storm surge induced coastal Inundation”, Proceedings of the 29th Ocean Engineering Conference, pp. 219-224, 2007.
[43] Whipple, K. X., “Open-channel flow of Bingham fluids: Applications in debris-flow research”, The Journal of Geology, Vol. 105, pp. 243-262, 1997.
[44] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004.
[45] Wu, T. R. et al., ”Dynamic coupling if multi-phase fluids with a moving obstacle”, Journal of Marine Science and Technology, Vol. 19, No. 6, pp. 643-650, 2011.
[46] Zhao, M., Cheng, L. and Zang, Z., “Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents”, Coastal Engineering, Vol. 57, pp. 709–721, 2010.
[47] Zhao, Z. and Fernando, H. J. S., “Numerical simulation of scour around pipelines using an Euler-Euler coupled two phase model”, Env. Fluid Dyn., Vol. 7, No. 2, pp. 121-142, 2007.
[48] Logan, M. and Iverson M., “Video Documentation of Experiments at the USGS Debris-Flow Flume 1992–2006”, USGS, 2007.
http://pubs.usgs.gov/of/2007/1315/
[49] 財團法人中華顧問工程司,「莫拉克颱風雙園大橋災害致災原因分析研究委託服務工作─期初報告書」,交通部公路總局第三區養護工程處,2010年4月。
[50] 行政院農委會水土保持局,中華水土保持學會,「水土保持手冊」,2005年11月。
[51] 劉格非與李峰昌,“石流撞擊機制之試驗分析”, The Chinese Journal of Mechanics, Vol.13, No.1, 1997.
[52] 林銘郎,”土石流災害之地質環境探討”,土石流地質調查與防災對策研討會論文集,第6-1-6-28頁,2003。
[53] 王茂興,” 暴潮引致海岸地表淹水之模擬分析”,第29屆海洋工程研討會論文集,國立成功大學,2007年11月。
[54] 陳孟志,” 以三維賓漢流數值模式模擬海嘯沖刷坑之發展”,碩士論文,國立中央大學水文與海洋科學研究所,2011。
[55] 姚俊煌,”泥流型土石流之流變參數研究”,碩士論文,國立台灣科技大學營建工程系,2007。
[56] 趙啟宏,”土石流之數值模擬及流變參數特性之探討”,碩士論文,國立台灣大學土木工程學研究所,2004。
[57] 杜昀,”以移動球法量測土石漿體及新拌混凝土之流變性”,博士論文,國立雲林科技大學工程科技研究所博士班,2004。
[58] 王志賢,”泥沙顆粒組成對黏性土石流體流變參數影響之研究”,博士論文,國立成功大學水利及海洋工程研究所,2007。
[59] 郭啟文,”泥漿體及礫石泥漿體之流變特性”,碩士論文,國立成功大學水利及海洋工程研究所,2002。
[60] 楊承學,”水庫淤泥管路輸送主要損失研究”,碩士論文,私立中原大學土木工程學系,2003。
[61] 吳政貞,”土石流流況數值分析-以溪頭為例”,碩士論文,國立台灣大學土木工程學研究所,2003。
[62] 中央氣象局,「颱風的災害與預防」。http://www.cwb.gov.tw/V7/knowledge/encyclopedia/ty056.htm
[63] 行政院農委會水土保持局,「土石流資訊」。
http://www.swcb.gov.tw/form/index.asp?m1=11&m2=58
[64] 維基百科,「八八水災」。
http://zh.wikipedia.org/wiki/%E5%85%AB%E5%85%AB%E6%B0%B4%E7%81%BD
[65] 行政院農委會林務局。
http://www.forest.gov.tw/mp.asp?mp=1
論文全文檔清單如下︰
1.電子全文(6789.498K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *