帳號:guest(54.80.137.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:凌安和
作者(外文):An-Ho Ling
論文名稱:海岸樹林及消波結構物對海嘯能量消散之模擬
論文名稱(外文):Numerical Simulation on the Tsunami Energy Dissipation by the Coastal Vegetation and Structures
指導教授:吳祚任
指導教授(外文):Tso-Ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:996206011
畢業學年度:100
語文別:中文
論文頁數:248
中文關鍵詞:孔隙介質海嘯湧潮馬尼拉海溝體積分率法墾丁海嘯植生消散
外文關鍵詞:tsunami boreporous mediadissipation by vegetationVolume of Fluid ( VOF)Manila Trench
相關次數:
  • 推薦推薦:0
  • 點閱點閱:266
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
近年來大規模海嘯(Tsunami)事件頻傳,使世人開始關注海嘯所帶來之破壞力以及其科學與工程上之議題。在海嘯減災上,海岸植生消能法(Dissipation by the Vegetation)是重要且環保之手段之一。台灣地處於太平洋火環上,有遭受海嘯攻擊之危機,因此海岸植生對台灣海嘯災害之影響將是本文探討之重點。本文第一階段將以與海嘯湧潮(Tsunami Bore)有相似行為之潰壩湧潮(Dam-Break Bore)為研究主軸,以三維LES-VOF紊流數值模式進行模擬,並以實驗數據進行驗證與分析,以探討湧潮與複雜柱狀陣列結構物之交互作用。結果發現本三維數值模式能準確預測湧潮與結構物撞擊後所產生之飛濺碎波以及消能行為。
然而三維數值模擬相當耗時,因此本研究第二階段接續發展孔隙介質模式,希望將複雜但又均勻之植生結構物以孔隙介質取代。本文分析不同孔隙介質阻力模式於不同孔隙率之適用性,並設計實驗以供數值模式驗證,以發展適合之孔隙介質模式。結果發現海岸植生之孔隙阻力模式中,重要參數為孔隙率、流速與阻力係數,本研究據此發展適合大孔隙介質之阻力模式。模擬結果與實驗數據比對有相當優良之一致性。
本研究於最後階段進行台灣墾丁地區之海岸植生調查,並結合真實地形進行數值模擬,探討墾丁地區海岸植生對於馬尼拉海溝潛在大規模海嘯之消散作用。結果發現植生孔隙介質於海嘯上溯(Run - Up)高度、湧潮深入陸地之距離與湧潮退回海面之回溯(Run - Down)皆有影響。由計算出之流速分布圖可知,模式所設置之孔隙樹林介質確有阻滯水體而削弱海嘯能量之效果。比較無孔隙介質、孔隙率0.95之真實樹林介質與孔隙率0.75之自然樹林介質結果,將不同案例之結果進行比對並以無樹林案例為基準,當樹林較稀疏時(孔隙率=0.95),將會造成5.36 %上溯高度減少之消散效果,而當樹林自然生長時(孔隙率=0.75),將可減少23.21 %之上溯高度,由於距野外調查當地樹林密度所估計之孔隙率約為0.95,由模擬之結果可推斷目前之樹林情形相較於無樹林之情形,約可於海嘯事件中產生5.36 %之上溯高度消散效果。
Due to the frequent large-scale Tsunami events recently, attention has been drawn to the destruction brought by these events and the relevant scientific and engineering issues. Dissipation induced by coastal vegetation is an important and environment-friendly method for reducing the hazard caused by tsunamis. Due to locating on the Pacific ring of fire, Taiwan is under the threat of tsunami events. The present study focuses energy reduction caused by the coastal vegetation to the tsunami events in Taiwan. At first, the present study focuses on describing the bore behavior of dam-break cases. The experimental data are used to validate the numerical model, LES-VOF model. The interaction between a bore and a complex pillar array is presented. We found that the LES-VOF model is capable of precisely predicting breaking waves and energy dissipation that occur after the impact of the bore to the structure.
However, as considering the time-consuming issue on the 3D simulation, we develop a porous media model that aims at replacing the complex yet uniform vegetation structure with a porous structure. The applicability of different porous drag models with different porosities is analyzed, and validated with the experimental data. It is found that the simulation results and the experimental data are highly consistent.
At the last part of this study is to investigate the effect of energy caused by vegetation in Kenting area. A real-bathymetry numerical simulation is conducted, and a tsunami scenario which oriented from Manila trench is considered. The result shows that the dense vegetation will have significant effect on the maximum run-up height, inundation distance, flow velocity and maximum run-down. In this case, two porosities of the filed vegetation are considered. The result shows that run-up height of porosity 0.95 is increased by 5.36%, and porosity 0.75 is increased by 23.21%.
摘要I
AbstractIII
誌謝V
目錄VI
圖目錄IX
表目錄XII
第一章緒論1
1-1前言1
1-2研究目的與方法2
1-3本文架構3
第二章文獻回顧6
2-12004南亞海嘯植生消能案例6
2-2海岸植生消能方法回顧10
2-3孔隙介質方法及阻力模式之文獻回顧12
第三章模式說明與研究方法20
3-1LES-VOF模式簡介20
3-1-1統御方程式(Governing Equations)21
3-1-2流體體積法(Volume of Fluid, VOF)23
3-1-3大渦模擬(Large Eddy Simulation , LES)26
3-2孔隙介質方法與阻力模式31
3-3球體孔隙介質實驗設置34
3-4孔隙介質數值模擬設置35
3-5滲透係數選擇說明40
3-6海嘯能量與台灣海岸地形與樹林結構物模擬設置40
3-6-1海嘯波型態40
3-6-2COMCOT資料41
3-6-3研究範圍41
3-6-4墾丁野外調查資料43
3-6-5植生海嘯模擬設置44
第四章實驗與數值模式結果54
4-1三維非等相阻力柱列與二維孔隙介質之模擬54
4-2潰壩波撞擊球體等相均勻之孔隙介質實驗結果69
4-3孔隙介質實驗上溯高度與二維模擬結果73
4-4海岸樹林與孔隙結構物模擬二維模擬結果79
第五章結論與建議122
5-1結論122
5-2建議123
參考文獻125
附錄A、曾文水庫攔木設施模擬與介紹133
附錄B、高屏峽谷斷纜事件199
附錄C、LES-VOF模式介紹208
附錄D、數值模式設定檔(Input files)214
附錄E、口試書面答覆表231

圖目錄
圖1.1 斯里蘭卡地圖5
圖1.2 斯里蘭卡西南沿岸植生5
圖2.1 紅樹林(Mangroves)9
圖3.1 流體體積法之體積分率示意圖30
圖3.2 自由液面重建示意圖30
圖3.3 潰壩實驗之渠槽設計示意圖(正視)36
圖3.4 潰壩實驗之渠槽設計示意圖(俯視)37
圖3.5 潰壩實驗之渠槽止水條a、b之設計示意圖38
圖3.6 實驗用之球體孔隙介質近照38
圖3.7 孔隙率為0.3994之潰壩孔隙介質模擬自由液面圖39
圖3.8 馬尼拉海溝於規模8.2之可能發生海嘯溢淹深度潛勢(墾丁)49
圖3.9 南台灣墾丁植生照片50
圖3.10 海岸樹林及消波結構物對孤立波海嘯能量消散模擬設置示意圖51
圖3.11 海岸樹林及消波結構物對海嘯能量消散模擬示意圖52
圖3.12 模擬網格示意圖(未依比例)53
圖4.1 二維柱列孔隙介質模擬自由液面圖(模擬時間0.00秒、0.30秒)59
圖4.2 二維柱列孔隙介質模擬自由液面圖(模擬時間0.95秒、1.20秒)60
圖4.3 二維與三維模擬之自由液面比較圖(模擬時間0.00秒、0.30秒)61
圖4.4 二維與三維模擬之自由液面比較圖(模擬時間0.95秒、1.20秒)62
圖4.5 二維孔隙介質模擬之速度分布圖(模擬時間0.00秒、0.30秒)63
圖4.6 二維孔隙介質模擬之速度分布圖(模擬時間0.95秒、1.20秒)64
圖4.7 二維孔隙介質模擬之速度向量圖(模擬時間0.00秒、0.30秒)65
圖4.8 二維孔隙介質模擬之速度向量圖(模擬時間0.95秒、1.20秒)66
圖4.9 二維孔隙介質模擬之壓力分布圖(模擬時間0.00秒、0.30秒)67
圖4.10 二維孔隙介質模擬之壓力分布圖(模擬時間0.95秒、1.20秒)68
圖4.11 球體孔隙介質實驗影片截圖(撞擊孔隙介質前)71
圖4.12 球體孔隙介質實驗影片截圖(撞擊孔隙介質後)72
圖4.13 孔隙率0.3994之模擬自由液面圖(模擬時間0.00秒、0.45秒)74
圖4.14 孔隙率0.3994之模擬自由液面圖(模擬時間0.60秒、0.90秒)75
圖4.15 孔隙率0.3994之模擬自由液面圖(模擬時間1.00秒、1.20秒)76
圖4.16 實驗上溯高度與二維模擬之結果比較圖(case A、case B)。77
圖4.17 實驗上溯高度數化與二維模擬之結果比較圖(case C)。78
圖4.18 無樹林之海嘯模擬流速分布圖(模擬時間333秒、345秒)88
圖4.19 無樹林之海嘯模擬流速分布圖(模擬時間360秒、375秒)89
圖4.20 目前樹林之海嘯模擬流速分布圖(模擬時間333秒、345秒)90
圖4.21 目前樹林之海嘯模擬流速分布圖(模擬時間360秒、375秒)91
圖4.22 自然樹林之海嘯模擬流速分布圖(模擬時間333秒、345秒)92
圖4.23 自然樹林之海嘯模擬流速分布圖(模擬時間360秒、375秒)93
圖4.24 無樹林海嘯湧潮上溯最高之流速分布圖(模擬時間365秒)94
圖4.25 現況樹林海嘯湧潮上溯最高之流速分布圖(模擬時間372秒)95
圖4.26 自然樹林海嘯湧潮上溯最高之流速分布圖(模擬時間369秒)96
圖4.27 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間333秒)97
圖4.28 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間335秒)98
圖4.29 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間337秒)99
圖4.30 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間339秒)100
圖4.31 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間341秒)101
圖4.32 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間343秒)102
圖4.33 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間345秒)103
圖4.34 無樹林湧潮上溯接觸介質前流速分布圖(模擬時間347秒)104
圖4.35 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間333秒)105
圖4.36 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間335秒)106
圖4.37 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間337秒)107
圖4.38 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間339秒)108
圖4.39 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間341秒)109
圖4.40 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間343秒)110
圖4.41 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間345秒)111
圖4.42 現況樹林湧潮上溯接觸介質前流速分布圖(模擬時間347秒)112
圖4.43 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間333秒)113
圖4.44 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間335秒)114
圖4.45 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間337秒)115
圖4.46 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間339秒)116
圖4.47 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間341秒)117
圖4.48 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間343秒)118
圖4.49 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間345秒)119
圖4.50 自然樹林湧潮上溯接觸介質前流速分布圖(模擬時間347秒)120
圖4.51 樹林介質模擬之上溯高度比較圖。121

表目錄
表3.1 墾丁小灣植生調查表46
表3.2 墾丁大灣植生調查表47
表3.3 墾丁南灣植生調查表48
表4.1 文獻之 與 值比較58
表4.2 潰壩球體孔隙介質實驗結果70
表4.3 海嘯與樹林孔隙介質模擬結果85
表4.4 不同孔隙樹林介質情形之模擬結果比較86
表4.5 不同孔隙樹林介質情形之流速測計資料87
[1] Ali Ghassemi and Ali Pak, 2011, ”Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method”, Int. J. Numer. Anal. Meth. Geomech. 35:886–901
[2] Bear J., "Dynamic of fluids in porous Media", Dover Science Books, 1972
[3] Bayasa J. C. Laso, Marohna C., Dercona G., Dewib S., Piephoc H. P., Joshib L., Noordwij-kb M. v., Cadischa G., 2011 “Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh” PNAS, vol. 108, no. 46, 18612-18617
[4] Chan H. C., Zhang Y., Leu J. M., Chen Y.-S., 2010, “Numerical Calculation of Turbulent Channel Flow with Porous Ribs”, Journal of Mechanics, Vol. 26, No. 1,
[5] Chapuis R.P., Aubertin M., 2003, “Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation”, Ecole Polytechnique Montreal,
[6] Danielson F. et al., 2005, ”The Asian tsunami: A protective role for coastal vegetation”, Science, 310, 643
[7] Dao M. H., Tkalich P., 2007, “Tsunami propagation modelling – a sensitivity study”, Nat. Hazards Earth Syst. Sci., 7, 741–754
[8] Dmitriev M. N., 1995 ,“Surface Porosity and Permeability of Porous Media With a Periodic Microstructure”, Fluid Dynamics, Vol. 30, No. 1
[9] Dmitriev M. N., Dmitriev N. M., Maksimov V.M.,2004 “Representation of the Functions of the Relative Phase Permeabilities for Anisotropic Porous Media”, Fluid Dynamics, Vol. 40, No. 3, 2005, pp. 439–445.
[10] Fernando H. J. S., Samarawickrama, Balasubramanian S. P. S., Hettiarachchi S. S. L., Voropayev S., 2008, “Effects of porous barriers such as coral reefs on coastal wave propagation”, Journal of Hydro-environment Research 1, 187-194
[11] Garcia N. ,Lara J.L., Losada I.J., 2004, “2-D numerical analysis of near-field flow at low-crested permeable breakwaters”, Coastal Engineering 51,991-1020
[12] Garrison, “Oceanography – An Invitation to Marine Science”, Thomson, 2005, 5th edition
[13] Hsu T.-J., Sakakiyama T., Liu L.-F., 2002, “A numerical model for wave motions and turbulence flows in front of a composite breakwater”, Coastal Engineering, 46, 25–50
[14] Hu K.-C., “Interaction of Dam-Break Waves and Porous Media”, PhD dissertation, National Cheng Kung University in Department of Hydraulic and Ocean Engineering, 2010
[15] Imamura F., Yalciner A. C., Ozyurt G., “Tsunami Modelling Manual (TUNAMI model)”, 2006
[16] Iverson L. R., Prasad A. M., “Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra”, 2007
[17] Kalaydjian F.J-M., Moulu J-C., Vizika O., P.K., 1996, “Munkerud Three-phase flow in water-wet porous media: gas/oil relative permeabilities for various spreading conditions”, Journal of Petroleum Science and Engineering, 17, 275-290
[18] Kaplan, M.; Renaud, F.G; Luchters, G., 2009, ”Vulnerability assessment and protective effects of coastal vegetation during the 2004 Tsunami in Sri Lanka”, Nat. Hazards Earth Syst. Sci., 9, 1479–1494
[19] Kathiresan K., Rajendran N., 2005, “Coastal mangrove forests mitigated tsunami”, Estuarine Coastal Shelf Sci., 65, 601-606
[20] Koh H. L., Teh S. Y., Liu P. L.–F., Ahmad I. M.. Ismail, Lee H. L., “Simulation of Andaman 2004 tsunami for assessing impact on Malaysia”, Journal of Asian Earth Sciences, 36, 74-83
[21] Koponen A., Kataja M., and Timonen J., 1996, “Permeability and effective porosity of porous media”, Physical Review E Vol. 56, No. 3
[22] Kozeny, J.”Ueber kapillare Letitung des Wassers im Boden.” Sitzungsber Akad. Wiss., Wien, 136(2a):271-306, 1927
[23] Lara J. L., Garcia N., Losada I. J., 2006, “RANS modelling applied to random wave interaction with submerged permeable structures”, Coastal Engineering, 53, 395–417
[24] Lee S., Choi D. W., 2006,“On coupling the Reynolds-averaged Navier–Stokes equations with two-equation turbulence model equations”, Int. J. Numer. Meth. Fluids, 50, 165-197
[25] Leu J. M., Chan H.C., Chu M. S., 2008, “Comparison of turbulent flow over solid and porous structures mounted on the bottom of a rectangular channel”, Flow Measurement and Instrumentation, 19, 331-337
[26] Leva M., Weintraub M., Grummer M., Pollchik M., H. H., 1951, “Fluid Flow Through Packed and Fluidized Systems”, United States Government Printing, Bureau of Mines, Bulletin, 504
[27] Lin P., 1998, “Numerical modeling of breaking waves”, PhD dissertation , Cornell University
[28] Lin P., Liu P. L.-F., 1998, “A numerical study of breaking waves”, J. Fluid Mech., vol. 359, pp. 239-264.
[29] Liu P. L.-F., Lin P., Chang K.-A., Sakakiyama T., 1999, “Numerical Modeling of Wave Interaction with Porous Structures”, Journal of Waterway, Port, Coastal, and Ocean Engineering, 125, No. 6, 322-330
[30] Liu L.-F. Philip and Jiangagn Wen, 1997, Journal of Fluid Mechanics, vol. 347, pp. 119-139.
[31] Losada I. J. , Lara J. L., Guanche R., Jose M. G.-O., 2008, “Numerical analysis of wave overtopping of rubble mound breakwaters”, Coastal Engineering, 55, 47-62
[32] Magnico P., 2009, “Analysis of permeability and effective viscosity by CFD on isotropic and anisotropic metallic foams”, Chemical Engineering Science, 64, 3564- 3575
[33] Mann K. H.,2000, “Ecology of Coastal Waters With Implications for Management”, Blackwell Sci., Malden, Mass., pp. 406
[34] Marcke P. V., Verleye B., Carmeliet J., Roose D., Swennen R., 2010, “An Improved Pore Network Model for the Computation of the Saturated Permeability of Porous Rock”, Transp Porous Med , 85:451–476
[35] Mauran S., Rigaud L., Coudevylie O., 2001, “Application of the Carman–Kozeny Correlation to a High-Porosity and Anisotropic Consolidated Medium: The Compressed Expanded Natural Graphite”, Transport in Porous Media, 43, 355–376
[36] Mazda Y., Magi M., Kogo M. Hong P. N., 1997, “Mangroves as a coastal protection from waves in the Tong King Delta”, Vietnam, Mangroves Salt Marshes, 1, 127-135
[37] Mikami T., Shibayama T., Esteban M., Matsumaru R., 2012, “Field Survey of the 2011 Tohoku Earthquake and Tsunami in Miyagi and Fukushima Prefectures”, Coastal Engineering Journal, Vol. 54, No. 1, 1250011
[38] Millingtonand R. J., Quirk D. J. P., 1960, “Permeability of Porous Solids”, Departments of Agronomy and Agricultural Chemistry, Waite Institute, University of Adelaide
[39] Riffe K. C., Henderson S. M., Mullarney J. C., 2011, “Wave dissipation by flexible vegetation”, Geophysical Research Letters, Vol. 38, L18607
[40] Saenger P., 2002”Mangrove Ecology, Silviculture , and Conservation”, Kluwer Acad Publishers, Dordrecht, Netherlands, pp. 360
[41] Santillana M. , Dawson C., 2010, “A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations”, Comput Geosci, 14, 31–53
[42] Saripalli K. P., Serne R. J., Meyer P. D., McGrail B. P., 2002 “Perdiction of Diffusion Coefficients in Porous Media Using Tortuosity Factors Based on Interfacial Areas”, Ground Water Vol. 40, No. 4, 346-352
[43] Sergio K., Lawrence M. S., Johnson D. L., 1992, “Fluid permeability in porous media: Comparison of electrical estimates with hydrodynamical calculations”, Physical Review B, Vol. 45, No. 1
[44] Swanso R.C., Rossow C.-C., 2011, ”An efficient solver for the RANS equations and a one-equation turbulence model”, Computers & Fluids 42, 13-25
[45] Szilagyi J. and Parlange M. B., 1998, “Baseflow separation based on analytical solutions of the Boussinesq equation”, Journal of Hydrology 204, 251-260
[46] Tadepalli S., 1996, “Model for the Leading Waves of Tsunamis”, Physical Review Letters, Vol. 77, No. 10
[47] Tan F. P. P., Tabor G., Xu X. Y., 2011, “Comparison of LES of Steady Transitional Flow in an Idealized Stenosed Axisymmetric Artery Model With a RANS Transitional Model”, Journal of Biomechanical Engineering, Vol. 133, 051001
[48] The Consultatice Grop on Indonesia, 2005 “Indonesia: Preliminary Damage and Loss Assessment”, Bappenas
[49] Thienkura W., Cardozo B. L., Chakkraband M. L. S., T. E. Guadamuz, Pengjuntr W., Tantipiwatanaskul P., Sakornsatian S., Sakornasatian S., Ekassawin S., Panyayong B., Varangrat A., Tappero J. W., Schreiber M., Griensven,F. v., 2006, “Symptoms of Posttraumatic Stress Disorder and Depression Among Children in Tsunami-Affected Areas in Southern Thailand”, JAMA, Vol. 296, No. 5
[50] Titov V.V., Gonzalez F.I., 1997 “Implementation and Testinf of the Method of Splitting Tsunami (MOST) Model”, NOAA/Pacific Marine Environmental Laboratory, No. 1927
[51] Udo K., Sugawara D., Imai K., Mano A., 2012, “Impact of the 2011 Tohoku Earthquake and Tsunami on Beach Morphology Along the Northern Sendai Coast”, Coastal Engineering Journal, Vol. 54, No. 1, 1250009
[52] Vafai K. and Kim S. J., 1995, “On the Limitations of the Brinkman-Forchheimer-extended Darcy equation”, Journal Heat and Fluid Flow, 16, 11-15
[53] M. R. A. van Gent, 1995, “wave interaction with permeable coastal structures structures”, Delft University of Technology
[54] Vermaat J. E., Thampanya U., 2006, “Mangroves mitigate tsunami damage: A further response ”, Estuarine Coastal Shelf Sci., 69, 1-3
[55] Voropayev, S.A., Testik, F.Y., Fernando, H.J.S., Boyer, D.L., 2003. Burial and scour around a short cylinder under progressive shoaling waves. Ocean Engineering 30 (13), 1647-1667.
[56] Wen L. Y., 2008, “Research of the Porous Concrete Method-as an example in a Swell Pattern.”, Master dissertation, National Ilan University
[57] Whitaker S., 1996, “The Forchheimer Equation: A Theoretical Development”, Transport in Porous Media, 25, 27-61
[58] Wolanski E., 2007, ”Protective functions of coastal forests and trees against natural hazards, in Coastal Protection in the Aftermath of the Indian Ocean Tsunami: What Role for forests and Trees?”, edited by Braatz S, et al,. Bangkok, Food and Agric. Organ., pp. 157-179,
[59] Wu T.-R., 2004, “A Numerical Study of Three-Dimensional Breaking Waves and Turbulence Effects”, PhD dissertation, Cornell University
[60] Yanagisawa H., Koshimura S., Goto K., Miyagi T., Imamura F., Ruangrassamee A., Tanavud C., 2009, “The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis”, Estuarine, Coastal and Shelf Science 81, 27–37
[61] Yanagisawa H., Koshimura S., Miyagi T., Imamura F., 2010, "Tsunami damage reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model", Journal of Geophysical Reseach, vol. 115, C06032
[62] Yazdchi K. , Srivastava S., Luding S., 2011, “Microstructural effects on the permeability of periodic fibrous porous media”, International Journal of Multiphase Flow 37, 956–966
[63] Zhang J.-S, Jeng D.-S, Liu P.L.-F, 2011, “Numerical study for waves propagating over a porous seabed around a submerged permeable breakwater: PORO-WSSI II model”, Ocean Engineering 38, 954–966
[64] Zheng Q., Yu B., 2012, “A fractal permeability model for gas flow through dual-porosity media”, Journal of Applied Physics, 111, 024316
[65] 朱佳仁,2003, 「環境流體力學」,科技圖書股份有限公司
[66] 李宜軒,2007,「斜坡上歲波孤立波波高演化及溯升之實驗」,碩士論文,國立成功大學水利及海洋工程研究所
[67] 許家量,2009,「連續底定式透水結構物之流場分析」,碩士論文,國立成功大學水利及海洋工程研究所
[68] 許泰文,2003,「近岸水動力學」,科技圖書股份有限公司
[69] 陳孟志,2011,「以三維賓漢留數值模式模擬海嘯沖刷坑之發展」,碩士論文,國立中央大學水文與海洋科學研究所
[70] 郭一羽,2004,「海岸環境與生態」,台灣近岸產業發展研討會
[71] 郭金棟,2001,「台灣地區既有海堤功能檢討」,經濟部水利處水利規劃試驗所
[72] 郭金棟,2003,「海岸整治與生態工法應用之案例介紹」,生態工法人才培訓講習會
[73] 莊美惠,2009,「雙向流固耦合移動邊界法發展及其於山崩海嘯之研究」,碩士論文,國立中央大學水文與海洋科學研究所
[74] 富田孝史,王慶福譯,2005,「海嘯發生與傳播特性之研究」,交通部運輸研究所,港灣報導季刊
[75] 黃婉筑,2007,「明渠通過孔隙方塊之三維流場模擬分析」,碩士論文,國立成功大學水利及海洋工程研究所
[76] 曾世霖,2011,「台灣西南外海高屏峽谷沉積物及沉積機制研究」,碩士論文,國立中央大學地球物理研究所
[77] 張興漢,張舜鈞,黃清哲,丁舜臣,黃煌煇,2001,「孤立波通過透水潛提之波型變化分析」,海洋工程研討會論文集
[78] 中國時報,潘建志,「南灣之星業者 私砍老樹惹眾怒」http://news.chinatimes.com/domestic/11050612/112012030100336.html,2012年3月1日
[79] 墾丁國家公園管理處網站,http://www.ktnp.gov.tw/cht/culture.aspx
論文全文檔清單如下︰
1.電子全文(9081.060K)
(電子全文 已開放)
紙本授權註記:2014/8/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *