帳號:guest(54.225.38.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:莊美惠
作者(外文):Mei-hui Chuang
論文名稱:雙向流固耦合移動邊界法發展及其於山崩海嘯之研究
論文名稱(外文):Developing a Two-way Coupled Moving Solid Method for Solving Landslide Generated Tsunamis
指導教授:吳祚任
指導教授(外文):Tso-ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:966205004
畢業學年度:97
語文別:英文
論文頁數:89
中文關鍵詞:山崩海嘯流體體積法移動固體法離散元素法浮動塊體
外文關鍵詞:Volume of Fluid (VOF)Discrete Element Method (DEM)Landslide TsunamiMoving solid algorithmFloating cube
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
山崩引發海嘯是自然界最嚴重的災害之一,然而在數值模擬上,由於固體邊界與自由液面交互之影響,使得求解此問題存在著一定的困難度。Liu et al (2005) 展示水面上與水面下滑落巨石之實驗與數值模擬,研究中發展了單向耦合的移動固體法,但該移動固體法必須事先給定山崩塊體滑落之路徑,故其應用範圍因而受限。本研究發展雙向耦合移動邊界法,採用離散元素法計算由求解Navier-Stokes方程式給予固體表面壓力預測其運動行為,以流體體積法追蹤自由液面,並以投影法計算壓力與速度場。以移動邊界法為橋樑,結合雙向耦合離散元素法與流體體積法,藉由移動固體法,我們將可描述固體的運動路徑。
  本研究利用山崩引發海嘯之實驗數據來驗證雙向耦合模式,結果顯示數值計算之固體路徑與實驗紀錄相當吻合。模擬結果顯示,當山崩塊體密度小於2100 kg/m3時,塊體之滑落運動受水體壓力有明顯的影響。一般而言,塊體在空氣中運動時,呈現正加速度之移動;而塊體在剛進入水面時,則呈現負加速度之運動。數值模擬發現,塊體在下潛至2倍塊體尺度後,將達終端速度。當塊體密度大於3400 kg/m3後,負加速度的表現極不明顯,並在下潛至0.5倍塊體尺度後,產生終端速度。此外,本研究加寬實驗渠道,以了解渠寬對於塊體移動之影響。
  本研究進一步模擬水中漂浮之固體運動,密度分別為600 kg/m3到800 kg/m3之固體,發現該運動具有複雜之六個自由度,將其結果與理論解比較,以驗證流固耦合模式之準確度,並提供未來於港口沉箱作業應用之參考。
The landslide generated tsunami is one of the most devastating nature hazards. Because both the moving solid boundary and free-surface are involved and coupled together, it makes numerical simulation a difficult task. Liu et al. (2005) performed laboratory experiment and numerical simulation of a sub-aerial and sub-merged rock slide. A one-way coupled moving solid method was developed and adopted in their study. However, the rock trajectory was required to perform the one-way coupled moving solid method which greatly limited the implementations. In this study, a two-way coupled moving solid algorithm is developed. The sophisticated discrete element method (DEM) model is utilized to predict the solid motion based on the surface pressure obtained from solving the Navier-Stokes equations. The free-surface kinematic is tracked by the volume-of-fluid (VOF) method. The modified projection method is used to decouple and solve the pressure and velocity field. The two-way coupled moving solid method is developed to bridge the DEM model and VOF model. With this newly developed moving-solid method, the trajectory of the solid motion is no longer needed to be prescribed.
The two-way coupled model is then validated by the experiment of landslide tsunamis. The simulation result shows that the predicted solid trajectory is very close to the experimental result. As the solid density is less than 2100 kg/m3, the solid sliding motion is greatly influenced by the water pressure. An acceleration of the solid motion is captured before the solid reaches the free-surface. When the solid is entering the water, the deceleration is observed. The solid then reaches the terminal velocity after diving into a depth twice of the solid height. However, this deceleration will not be observed if the solid density is higher than 3400 kg/m3. The deceleration ceases and the solid motion soon reaches the terminal velocity after a depth of half of the solid height. The effect of the width of channel is also studied to identify the wave reflection from the side walls.
In this study, we further simulate the motion of a floating cube with density from 600 kg/m3 to 800 kg/m3. The floating motion has 6 DOF (degrees of freedom) which is very sensitive to the accuracy of the coupling. The results are compared with the analytical solution. This simulation could be used to predict the caisson work in the future.
摘 要I
ABSTRACTIII
誌 謝V
Table of ContentsVI
List of TablesVIII
List of FiguresIX
Chapter 1 Introduction1
1-1 Motivation1
1-2 Scope of Present Study3
Chapter 2 Literature Review4
2-1 Review of Flow with Free-Surface4
2-2 Review of Internal Irregular Boundaries6
2-3 Review of Solid Mechanics7
2-4 Review of Solid Fluid Coupling8
2-4-1 One-Way Coupling8
2-4-2 Two-Way Coupling9
Chapter 3 Algorithm11
3-1 Fluid Model11
3-1-1 Governing Equations of Fluids11
3-1-2 Volume of fluid method for multi-phase flow13
3-1-3 Finite Volume Method18
3-1-4 Projection Method20
3-1-5 Partial-Cell Method22
3-1-6 Moving-Solid Algorithm23
3-2 Motion Analysis of Discrete Bodies24
3-2-1 Governing Equation of Solid Motion24
3-2-2 Pressure Force on the Solid Bodies28
3-2-3 Pressure Interpolation28
3-2-4 Displacement of Bodies29
3-3 Computational Cycle35
Chapter 4 Landslide Tsunami Simulation37
4.1 Setup37
4.2 Result and Discussion45
Chapter 5 Floating Cube Simulation58
5.1 Setup58
5.2 Result and Discussion61
Chapter 6 Conclusions and Future Works67
References68
Attaway, S. W., Hendrickson, B. A., Plimpton, S. J., Gardner, D. R., Vaughan, C. T. (1998). A parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D. Computational Mechanics, 22, 43-159.
Berger, M. J., LeVque, R. J. (1989). An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries. AIAA, 89-1930.
Chen, J., da Vitoria Lobo, N. (1995). Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations. Graphical Models and Image Processing, 57, 107-116.
Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Math. Comp., 22, 745-762.
Chorin, A. J. (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., 23, 341-353.
Cundall, P. A. (1988). Formulation of three-dimensional distinct element model-Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 107-116.
Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model-Part II: Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 117-125.
Davies, H. L. (1999). Tsunami PNG 1998 - extracts from earth talk. University of Papua New Guinea.
DeLong, M. (1997). Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, Los Alamos, New Mexico.
Foster, N., Metaxas, D. (1996). Realistic animation of liquids. Graphical Models and Image Processing, 58, 471-483.
Foster, N., Metaxas, D. (1997). Controlling fluid animation. Computer Graphics International, 97, 178-188.
Grilli, S. T., Watts, P. (1999). Modelling of waves generated by a moving submerged body: applications to underwater landslides. Eng. Anal. Boundary Elements, 23(8), 645-656.
Harbitz, C. B. (1992). Model simulations of tsunamis generated by the Storegga slides. Marine Geology, 105, 1-21.
Harlow, F. H., Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow. Phys. Fluids, 8, 2182-2189.
Hirt, C. W., Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys., 39, 201-225.
Imamura and Gica (1996). Numerical model for tsunami generation due to sub-aqueous landslide along a coast. Sci. Tsunami Hazards, 14, 13-28.
Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., DE Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E. (1999). Tsunami in Papua New Guinea was as intense as first thought. EOS. Trans. Am. Geophys., Union 80, 101, 104-105.
Kothe, D. B., Rider W. J., Mosso, S. J., Brock, J. S., and Hochstein, J. I. (1996). Volume tracking of interfaces having surface tension in two and three dimensions. Technical Report, AIAA 96-0859.
Liu, P.L.-F. (1994). Model equations for wave propagation from deep to shallow water. Advances in Coastal Engineering, 1, 125- 157.
Lin, P.L.-F. (2006). A multiple-layer σ-coordinate model for simulation of wave-structure interaction. Computers and Fluids, 35, 147-167.
Lin, P.L.-F., Li, C.W. (2002). A σ-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 38, 1045-1068.
Liu, P.L.-F., Wu, T.-R., Raichlen, F., Synolakis, C., and Borrero, J., (2005). Runup and rundown from three-dimensional sliding masses. Journal of Fluid Mechanics., 536, 107-144.
Lynett, P. J., Wu, T. R. and Liu, P.L.-F. (2002). Modeling wave runup with depth-integrated equations. Coast. Eng., 46, 89-107.
Madsen, P. A., Sorensen, O.R. (1992). A new form of the Boussinesq equations with improved linear dispersion characteristics: Part II. A slowly varying bathymetry. Coast. Eng., 18, 183-204.
Miller, D. J. (1960). Giant waves in Lituya Bay, Alaska. U.S. Geological Survey Professional Paper, 354C, 51-83.
Monaghan, J. (1994). Simulating free surface flows wit SPH. Journal of Computational Physics, 110, 399-406.
Moore, J. G., Bryan, W. B., Beeson, M. H. and Normark, W. R. (1995). Giant blocks in the South Kona landslide. Hawaii Geology, 23, 125-128.
Murty, T. S. (1977). Seismic Sea waves-Tsunamis. Bulletin of the Fisheries Research Board of Canada, 198, 337.
Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng., 119(6), 618- 638.
O''Brien, J. F. and Hodgins, J. K. (1995). Dynamic simulation of splashing fluids. Computer Animation, 95, 198-205.
Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10, 252-271.
Quirk J. J. (1994). An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex Two-D bodies. Computational Fluids, 23(1), 125-142.
Rider, W. J. and Kothe, D. B. (1998). Reconstructing Volume Tracking. J. Comp.Phys., 141, 112-152.
Shen L, Chan E-S. (2008). Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method. Ocean Eng, 35, 939-52.
Shi, G. H (1988). Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block system. Ph. D. Dissertation, University of California, Berkeley.
Shi, G. H. (1992). Manifold method of material analysis. Transactions of the Ninth Army Conference on Applied mathematics and Computing. Minneapolis, Minnesota, USA, 51-76.
Synolakis, C. E., Bardet, J. P., Borrero, J. C., Davies, H., Okal, E. O., Silver, E. A., Sweet, and S., Tappin, D. R. (2002). Slump origin of the 1998 Papua New Guinea Tsunami. Proc. Royal Society, London, Ser. A, 458, 763-789.
Takahashi T., Fujii H., Kunimatsu A, Hiwada K., Saito T., Tanaka K., Ueki H. (2003). Realistic animation of fluid with splash and foam. Computer Graphics Forum, 22, 391-401.
Takahashi T., Heihachi U., Kunimatsu A. (2002). The simulation of fluid-rigid body interaction. SIGGRAPH Sketches & Applications, 266.
Tilling, R. I., Koyanagi, R. Y., Lipman, P. W., Lockwood, J. P., Moore, J. G., and Swanson, D.W. (1976). Earthquake and related catastrophic events island of Hawaii, November 29, 1975: a preliminary report. U. S. Geol. Surv. Circ., 740, 1-33.
Villeneuve, M., Savage, S. B. (1993). Nonlinear dispersive shallow-water waves developed by a moving bed. J. Hydraul. Res., 31, 249-266.
Wang, C. Y., Sheng, J., Huang, C. J., Chen, M. H. (2008). Motion analysis of mixed polyhedral and ellipsoidal particles. Proceedings of 6th International Conference on Computation of Shell and Spatial Structures, 28-31.
Wang, S. S., Stuhmiller, J. H. (1980). Modified partial-cell method for free-surface incompressible flow simulations. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 3(2), 209–223.
Ward, S. N. (2001). Landslide tsunami. J. Geophys. Res., 106(B6), 11201-11215.
Wei, G. (2005a). A fixed-mesh method for general moving objects. Flow Science Technical Note, FSI-05-TN73.
Wei, G. (2005b). A fixed-mesh method for general moving objects in fluid flow. Modern Physics Letters B, 19(28-29), 1719-1722.
Wei, G., Kirby, J. T. (1995). A time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coast. Ocean Eng., 120, 251- 261.
Wei, G., Kirby, J. T., Grilli, S. T., Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves: Part I. Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71-92.
Wojtan, C., Mucha, P. J., Carlson, M., and Turk, G. (2007). Animating Corrosion and Erosion. Eurographics Workshop on Natural Phenomena.
Wu, T.-R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Ph.D. Dissertation, Cornell University.
Yang G., Causon D. M., Ingram D. M., Saunders R., Batten P. (1997). A Cartesian cut cell method for compressible flows. Part A and B. Aeronautical Journal, 101(1002), 47-56 and 57-65.
Zhao, D., E. G. Nezami, Y. M. A. Hashash, J. Ghaboussi (2006). Three-dimensional discrete element simulation for granular materials. Engineering Computations. International Journal for Computer-Aided Engineering and Software, 23, 749- 770.
Zhong, Z. H., and Nilsson, L. (1990). A contact searching algorithm for general 3-D contact-impact problems. Computers and Structures, 34(2), 327-335.
論文全文檔清單如下︰
1.電子全文(1950.984K)
(電子全文不開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *