帳號:guest(3.235.173.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:曾博森
作者(外文):Po-Sen Tseng
論文名稱:發展適用於印度洋之氣旋風暴潮預報模式
論文名稱(外文):Develop a cyclone storm surge forecast model suitable fot the Indian Ocean
指導教授:吳祚任
指導教授(外文):Tso-Ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:108626001
出版年:110
畢業學年度:109
語文別:中文英文
論文頁數:217
中文關鍵詞:印度洋孟加拉灣氣旋風暴潮COMCOT-SS參數化風場Holland 模式B值
外文關鍵詞:Bay of Bengal, Indian oceanCyclone storm surgeCOMCOT-SSParametric wind fieldHolland Model B value
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
印度洋北方之孟加拉灣地區常遭受熱帶氣旋侵襲。由於當地沿海人口密度高且多為低窪之泥沼地,熱帶氣旋所引起之氣旋風暴潮往往對當地造成嚴重破壞。如1970年發生於孟加拉灣之波拉氣旋(Cyclone Bhola)所引發之氣旋風暴潮,導致近50萬人死亡,為人類史上死亡人數最高之熱帶氣旋。本研究旨於以台灣COMCOT-SS風暴潮預報系統為基礎,發展適用於印度洋之氣旋風暴潮速算系統。由於印度洋之熱帶氣旋,其結構與強度皆有別於太平洋之颱風和大西洋之颶風,因此發展適合印度洋熱帶氣旋之參數化風場與風暴潮模式為本研究之重點。
本研究以五個歷史案例(2020年安芬氣旋(Cyclone Amphan)、2019年法尼氣旋(Cyclone Fani)、2018年提特里氣旋(Cyclone Titli)、2014年赫德赫德氣旋(Cyclone Hudhud)以及2013年費林氣旋(Cyclone Phailin)),分析3種不同參數化風場及NCEP大氣模式於氣旋風暴潮生成之準確度。本研究並以Holland(2010)模式做為基礎,透過上述5個案例之觀測風速及觀測暴潮水位之比對,校正出當參數B=0.742時,其風速、氣旋風暴潮之溢淹範圍及時序潮位高程上與觀測資料有最佳之匹配,而此B值不同於適用於太平洋及大西洋常用之B值,亦代表印度洋之氣旋風場結構有別於太平洋之颱風及大西洋之颶風。
文末,以本研究所建立之參數化風場及COMCOT-SS風暴潮模式對全球風暴潮事件最嚴重之1970年Cyclone Bhola進行案例還原,由於該場事件僅有颱風路徑,時序之氣壓資料及風速資料並沒有保存,目前僅知當時之最低氣壓及最高風速,因此在事件還原上,進行大氣壓力優先與風剪力優先等兩種情境進行。在大氣壓力優先之情境下,熱帶氣旋影響範圍較小,純因風暴潮所造成之內陸溢淹範圍涵蓋孟加拉國Barisal以南之Kuakata、Burir Char、Patharghata等沿海地區。而風剪力優先之情境下,熱帶氣旋影響範圍較大,溢淹範圍除涵蓋大氣壓力優先之範圍外更往內陸地區沿伸,其最遠可達孟加拉國Patuakhali。
The Bay of Bengal in the northern part of the Indian Ocean is often hit by tropical cyclones. Due to the high density of local coastal populations and mostly low-lying muddy land, cyclone storm surges caused by tropical cyclones often cause severe damage to the local area. For example, the cyclone storm surge triggered by Cyclone Bhola in the Bay of Bengal in 1970 caused nearly 500,000 deaths, making it the tropical cyclone with the highest death toll in human history. This research aims to develop a cyclone storm surge calculation system suitable for the Indian Ocean based on Taiwan’s COMCOT-SS storm surge forecasting system. Since tropical cyclones in the Indian Ocean are different in structure and intensity from typhoons in the Pacific and hurricanes in the Atlantic, the development of parametric wind fields and storm surge models suitable for tropical cyclones in the Indian Ocean is the focus of this research.
This study adopts 5 historical cases (Cyclone Amphan in 2020, Cyclone Fani in 2019, Cyclone Titli in 2018, Cyclone Hudhud in 2014, and the 2013 Cyclone Phailin), to analyze the accuracy of 3 parametric wind fields, as well as NCEP atmospheric models in the generation of cyclone storm surges. Based on the Holland (2010) model, this study obtained peakness parameters B=0.742 which performs well in these 5 historical cases by comparing the model results with the observation data. This B value is different from the usual B value applicable to the Pacific and Atlantic oceans. It also indicates that the structure of the cyclone wind field in the Indian Ocean is different from the Pacific ocean’s typhoon and the Atlantic ocean’s hurricane.
At the end of this paper, a case study of Cyclone Bhola in 1970, the most serious storm surge event in the world, is carried out by using the parameterized wind field and COMCOT-SS storm surge model. In this case, only the cyclone track, the minimum pressure, and maximum wind speed are recorded. Therefore, two scenarios, atmospheric pressure prioritize, and wind shear stress prioritize, are used for event reconstruction. In the scenario of atmospheric pressure prioritize, the impact area of the tropical cyclone is relatively small, and the inland overflow caused by storm surge covers Kuakata, Burir Char, Patharghata, and other coastal areas south of Barisal, Bangladesh. However, in the scenario of wind shear stress prioritize, the impact area is relatively large, and the flooding area reaches as far as Patuakhali, Bangladesh. Detailed information can be found in the content.
摘要 iii
Abstract iv
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xxiv
第 1 章、緒論 1
1.1. 研究背景與動機 1
1.2. 文獻回顧 5
1.2.1. 印度洋孟加拉灣氣旋風暴潮研究 5
1.2.2. 國際風暴潮研究 7
1.2.3. 風場相關研究 9
1.3. 研究方法 11
第 2 章、數值模式 12
2.1. COMCOT-SS介紹 12
2.2. 控制方程式 13
2.2.1. 線性淺水波方程式 14
2.2.2. 非線性淺水波方程式 15
2.3. 氣旋風暴之氣象場模式 18
2.3.1. Holland模式 18
2.3.2. CWB模式 20
2.3.3. Jelesnianski模式 22
2.3.4. NCEP大氣模式 24
2.4. 本文模式(Present) 25
第 3 章、參數化風場之參數校驗與氣旋風暴潮之模式驗證 32
3.1. 風速比對 32
3.1.1. 風速計之設置 32
3.1.2. Cyclone Amphan 33
3.1.3. Cyclone Fani 38
3.1.4. Cyclone Titli 41
3.1.5. Cyclone Hudhud 45
3.1.6. Cyclone Phailin 48
3.2. 潮位比對 52
3.2.1. 數值潮位計之設置 52
3.2.2. 巢狀網格之設置 54
3.2.3. Cyclone Amphan 57
3.2.4. Cyclone Fani 75
3.2.5. Cyclone Titli 93
3.2.6. Cyclone Hudhud 111
3.2.7. Cyclone Phailin 130
3.3. 模式驗證之結果與討論 148
第 4 章、歷史熱帶氣旋重建與分析 151
4.1. Cyclone Bhola事件介紹 151
4.2. 輸入之資料選擇 152
4.3. 巢狀網格之設置 154
4.4. 數值潮位計之設置 157
4.5. 壓力項影響分析之數值模擬_Scenario 1 158
4.6. 風剪力項影響分析之數值模擬_Scenario 2 164
4.7. 模擬之時序結果比較 170
4.8. 歷史熱帶氣旋模擬之結果與討論 173
第 5 章、結論 174
5.1. 結論 174
第 6 章、參考文獻 176
附錄A 情境案例之輸入檔 183
[1] Agnihotri, N., Chittibabu, P., Jain, I., Sinha, P. C., Rao, A. D., & Dube, S. K. (2006). A Bay–River Coupled Model for Storm Surge Prediction Along the Andhra Coast of India. Natural Hazards, 39(1), 83–101, DOI:10.1007/s11069-005-3812-7.
[2] Bhaskaran, P. K., Rao, A. D., & Murty, T. (2020). Tropical Cyclone–Induced Storm Surges and Wind Waves in the Bay of Bengal. Techniques for disaster risk management and mitigation, 237-294, DOI:10.1002/9781119359203.ch17.
[3] Carr, L. E., & Elsberry, R. L. (1997). Models of Tropical Cyclone Wind Distribution and Beta-Effect Propagation for Application to Tropical Cyclone Track Forecasting. Monthly Weather Review, 125(12), 3190–3209, DOI:10.1175/1520-0493(1997)125<3190:MOTCWD>2.0.CO;2.
[4] Chu, P. C., Veneziano, J. M., Fan, C., Carron, M. J., & Liu, W. T. (2000). Response of the South China Sea to Tropical Cyclone Ernie 1996. Journal of Geophysical Research: Oceans, 105(C6), 13991–14009, DOI:10.1029/2000JC900035.
[5] Das, P. K. (1972). Prediction Model for Storm Surges in the Bay of Bengal. Nature, 239(5369), 211–213, DOI:10.1038/239211a0.
[6] Das, Y., Mohanty, U. C., & Jain, I. (2015). Development of tropical cyclone wind field for simulation of storm surge/sea surface height using numerical ocean model. Modeling Earth Systems and Environment, 2(1), 2-13, DOI:10.1007/s40808-015-0067-5.
[7] Deppermann, S.J., C. E. (1947). Notes on the Origin and Structure of Philippine Typhoons. Bulletin of the American Meteorological Society, 28(9), 399–404, DOI:10.1175/1520-0477-28.9.399.
[8] Dietrich, J. C., Zijlema, M., Westerink, J. J., Holthuijsen, L. H., Dawson, C., Luettich, R. A., Stone, G. W. (2011). Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Engineering, 58(1), 45–65, DOI:10.1016/j.coastaleng.2010.08.001.
[9] Dube, S. K., Jain, I., Rao, A. D., & Murty, T. S. (2009). Storm surge modelling for the Bay of Bengal and Arabian Sea. Natural Hazards, 51(1), 3–27, DOI:10.1007/s11069-009-9397-9.
[10] Fang, G., Zhao, L., Song, L., Liang, X., Zhu, L., Cao, S., & Ge, Y. (2018). Reconstruction of radial parametric pressure field near ground surface of landing typhoons in Northwest Pacific Ocean. Journal of Wind Engineering and Industrial Aerodynamics, 183, 223–234, DOI:10.1016/j.jweia.2018.10.020.
[11] Fang, P., Ye, G., & Yu, H. (2020). A parametric wind field model and its application in simulating historical typhoons in the western North Pacific Ocean. Journal of Wind Engineering and Industrial Aerodynamics, 199, 104131-104143, DOI:10.1016/j.jweia.2020.104131.
[12] Flather, R. A., & Proctor, R. (1983). Prediction of North Sea storm surges using numerical models: Recent developments in UK. North Sea Dynamics, 299-317, DOI:10.1007/978-3-642-68838-6_21.
[13] Flather, R. A. (1994). A Storm Surge Prediction Model for the Northern Bay of Bengal with Application to the Cyclone Disaster in April 1991. Journal of Physical Oceanography, 24(1), 172–190, DOI:10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2
[14] Gayathri, R., Murty, P. L. N., Bhaskaran, P. K., & Srinivasa Kumar, T. (2015). A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal. Environmental Fluid Mechanics, 16(2), 429–452, DOI:10.1007/s10652-015-9434-z.
[15] Georgiou, P. N., Davenport, A. G., & Vickery, B. J. (1983). Design wind speeds in regions dominated by tropical cyclones. Journal of Wind Engineering and Industrial Aerodynamics, 13(1-3), 139–152, DOI:10.1016/0167-6105(83)90136-8.
[16] Gönnert, G., Dube, S. K., Murty, T., & Siefert, W. (2001). Global Storm Surges: Theory, Observations and Applications-Preface and Contents. Hydraulic Engineering Repository, Die Küste 63 Sonderheft, 1-7, https://hdl.handle.net/20.500.11970/101440.
[17] Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108(8), 1212–1218, DOI:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.
[18] Holland, G. J., Belanger, J. I., & Fritz, A. (2010). A Revised Model for Radial Profiles of Hurricane Winds. Monthly Weather Review, 138(12), 4393–4401, DOI:10.1175/2010MWR3317.1.
[19] Hsiao, L.-F., Chen, D.-S., Kuo, Y.-H., Guo, Y.-R., Yeh, T.-C., Hong, J.-S., Lee, C.-S. (2012). Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches. Weather and Forecasting, 27(5), 1249–1263, DOI:10.1175/WAF-D-11-00131.1.
[20] Jakobsen, F., Azam, M. H., & Mahboob-Ul-Kabir, M. (2002). Residual Flow in the Meghna Estuary on the Coastline of Bangladesh. Estuarine, Coastal and Shelf Science, 55(4), 587–597, DOI:10.1006/ecss.2001.0929.
[21] Jelesnianski, C. P. (1992). SLOSH: Sea, lake, and overland surges from hurricanes (Vol. 48). US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service.
[22] Jianfeng, G., Xiao, Q., Kuo, Y.-H., Barker, D. M., Jishan, X., & Xiaoxing, M. (2005). Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Advances in Atmospheric Sciences, 22(3), 415–427, DOI:10.1007/BF02918755.
[23] Kepert, J., & Wang, Y. (2001). The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core. Part II: Nonlinear Enhancement. Journal of the Atmospheric Sciences, 58(17), 2485–2501, DOI:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.
[24] Kim, S. Y., Yasuda, T., & Mase, H. (2008). Numerical analysis of effects of tidal variations on storm surges and waves. Applied Ocean Research, 30(4), 311–322, DOI:10.1016/j.apor.2009.02.003.
[25] Knapp, K. R., Knaff, J. A., Sampson, C. R., Riggio, G. M., & Schnapp, A. D. (2013). A Pressure-Based Analysis of the Historical Western North Pacific Tropical Cyclone Intensity Record. Monthly Weather Review, 141(8), 2611–2631, DOI:10.1175/MWR-D-12-00323.1.
[26] Krestenitis, Y. N., Androulidakis, Y. S., Kontos, Y. N., & Georgakopoulos, G. (2011). Coastal inundation in the north-eastern Mediterranean coastal zone due to storm surge events. Journal of Coastal Conservation, 15(3), 353-368, DOI:10.1007/s11852-010-0090-7.
[27] Lin, N.; Emanuel, K. A.; Smith, J. A.; Vanmarcke, E. (2010). Risk assessment of hurricane storm surge for New York City. Journal of Geophysical Research, 115(D18), D18121-18132, DOI:10.1029/2009JD013630.
[28] Liu, X., Wang, Q., Liu, C., He, Y., Wang, S., Hou, P., & Wu, Z. (2020). Wind field reconstruction and analysis of Super Typhoon Mangkhut (1822). Journal of Coastal Research, 99(SI), 151-157, DOI:10.2112/SI99-022.1.
[29] Madsen, H., & Jakobsen, F. (2004). Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal. Coastal Engineering, 51(4), 277-296, DOI:10.1016/j.coastaleng.2004.03.001.
[30] Matsui, M., Ishihara, T., & Hibi, K. (2001). Directional characteristics of probability distribution of extreme wind speeds by means of typhoon simulation. J. of Wind Eng, (89), 349-352.
[31] Meng, Y., Matsui, M., & Hibi, K. (1995). An analytical model for simulation of the wind field in a typhoon boundary layer. Journal of wind engineering and industrial aerodynamics, 56(2-3), 291-310, DOI:10.1016/0167-6105(94)00014-5.
[32] Mohanty, U. C.; Osuri, Krishna K.; Routray, A.; Mohapatra, M.; Pattanayak, Sujata (2010). Simulation of Bay of Bengal Tropical Cyclones with WRF Model: Impact of Initial and Boundary Conditions. Marine Geodesy, 33(4), 294–314, DOI:10.1080/01490419.2010.518061.
[33] Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M., & Nakakita, E. (2019). Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model. Coastal Engineering Journal, 61(3), 295-307, DOI:10.1080/21664250.2019.1586290.
[34] Murty, P. L. N., Bhaskaran, P. K., Gayathri, R., Sahoo, B., Kumar, T. S., & SubbaReddy, B. (2016). Numerical study of coastal hydrodynamics using a coupled model for Hudhud cyclone in the Bay of Bengal. Estuarine, Coastal and Shelf Science, 183, 13-27, DOI:10.1016/j.ecss.2016.10.013.
[35] Murty, P. L. N., Sandhya, K. G., Bhaskaran, P. K., Jose, F., Gayathri, R., Nair, T. B., & Shenoi, S. S. C. (2014). A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coastal Engineering, 93, 71-81, DOI:10.1016/j.coastaleng.2014.08.006.
[36] Murty, P. L. N., Srinivas, K. S., Rao, E. P. R., Bhaskaran, P. K., Shenoi, S. S. C., & Padmanabham, J. (2020). Improved cyclonic wind fields over the Bay of Bengal and their application in storm surge and wave computations. Applied Ocean Research, 95, 102048-102060, DOI:10.1016/j.apor.2019.102048.
[37] Neumann, C. J. (1993). Global Overview. In: Global guide to tropical cyclone forecasting, WMO/TC-No. 560, Report No. 560.
[38] Ozer, J., Deleersnijder, E., & Jamart, B. M. (1990). Model intercomparison: Description of a semi-implicit numerical model for shallow-water wave equations, MUMM's contribution to MAST-0050-C (SMA). Tech. Rep. 1MUMM, Brussels.
[39] Rao, A. D., Murty, P. L. N., Jain, I., Kankara, R. S., Dube, S. K., & Murty, T. S. (2012). Simulation of water levels and extent of coastal inundation due to a cyclonic storm along the east coast of India. Natural Hazards, 66(3), 1431–1441, DOI:10.1007/s11069-012-0193-6.
[40] Sebastian, A., Proft, J., Dietrich, J. C., Du, W., Bedient, P. B., & Dawson, C. N. (2014). Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN + ADCIRC model. Coastal Engineering, 88, 171–181, DOI:10.1016/j.coastaleng.2014.03.002.
[41] Shaji, C., Kar, S. K., & Vishal, T. (2014). Storm surge studies in the North Indian Ocean: A review. CSIR-NISCAIR, 125-147, http://hdl.handle.net/123456789/27267.
[42] Schwerdt, Richard. (1971). Worst Cyclone of the Century Batters East Pakistan. Mariners Weather Log. National Oceanic and Atmospheric Administration, 19.
[43] Schloemer, R. W. (1954). Analysis and synthesis of hurricane wind patterns over Lake Okeechobee, Florida (No. 31). US Department of Commerce, Weather Bureau.
[44] Shapiro, L. J. (1983). The Asymmetric Boundary layer Flow Under a Translating Hurricane. Journal of the Atmospheric Sciences, 40(8), 1984–1998, DOI:10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.
[45] Sheng, Y. P., Zhang, Y., & Paramygin, V. A. (2010). Simulation of storm surge, wave, and coastal inundation in the Northeastern Gulf of Mexico region during Hurricane Ivan in 2004. Ocean Modelling, 35(4), 314–331, DOI:10.1016/j.ocemod.2010.09.004.
[46] Singh, O. P., Ali Khan, T. M., & Rahman, M. S. (2000). Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorology and Atmospheric Physics, 75(1-2), 11–20, DOI:10.1007/s007030070011.
[47] Sparks, P. R., & Huang, Z. (2001). Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones. Journal of Wind Engineering and Industrial Aerodynamics, 89(11-12), 1047–1058, DOI:10.1016/S0167-6105(01)00098-8.
[48] Spentza, E., Chicaud, B., & de Andoin, I. G. (2012). Parametric Modelling of Cyclonic Winds For Quick Location Assessment. The Twenty-second International Offshore and Polar Engineering Conference, 770-777.
[49] Sun, J., He, H., Hu, X., Wang, D., Gao, C., & Song, J. (2019). Numerical simulations of typhoon Hagupit (2008) using WRF. Weather and Forecasting, 34(4), 999-1015, DOI:10.1175/WAF-D-18-0150.1.
[50] Takagi, H., Esteban, M., Shibayama, T., Mikami, T., Matsumaru, R., De Leon, M., & Nakamura, R. (2017). Track analysis, simulation, and field survey of the 2013 Typhoon Haiyan storm surge. Journal of Flood Risk Management, 10(1), 42-52, DOI:10.1111/jfr3.12136.
[51] Tan, C., & Fang, W. (2018). Mapping the wind hazard of global tropical cyclones with parametric wind field models by considering the effects of local factors. International. Journal of Disaster Risk Science, 9(1), 86-99, DOI:10.1007/s13753-018-0161-1.
[52] Thompson, E. F., & Cardone, V. J. (1996). Practical modeling of hurricane surface wind fields. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(4), 195-205, DOI:10.1061/(ASCE)0733-950X(1996)122:4(195).
[53] Van Nguyen, H., & Chen, Y. L. (2011). High-resolution initialization and simulations of Typhoon Morakot (2009). Monthly weather review, 139(5), 1463-1491, DOI:10.1175/2011MWR3505.1.
[54] Verboom, G. K., De Ronde, J. G., & Van Dijk, R. P. (1992). A fine grid tidal flow and storm surge model of the North Sea. Continental Shelf Research, 12(2-3), 213-233, DOI:10.1016/0278-4343(92)90030-N.
[55] Vickery, P. J., Skerlj, P. F., Steckley, A. C., & Twisdale, L. A. (2000). Hurricane wind field model for use in hurricane simulations. Journal of Structural Engineering, 126(10), 1203-1221, DOI:10.1061/(ASCE)0733-9445(2000)126:10(1203).
[56] Vickery, P. J., & Wadhera, D. (2008). Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data. Journal of Applied Meteorology and climatology, 47(10), 2497-2517, DOI:10.1175/2008JAMC1837.1.
[57] Vickery, P. J., Wadhera, D., Galsworthy, J., Peterka, J. A., Irwin, P. A., & Griffis, L. A. (2010). Ultimate wind load design gust wind speeds in the United States for use in ASCE-7. Journal of structural engineering, 136(5), 613-625, DOI:10.1061/(ASCE)ST.1943-541X.0000145.
[58] Wu, Z., Jiang, C., Deng, B., Chen, J., & Liu, X. (2019). Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions. Acta Oceanologica Sinica, 38(7), 74-83, DOI:10.1007/s13131-019-1459-z.
[59] 蔡育霖:〈風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究〉,國立中央大學水文與海洋科學研究所碩士論文,2014。
[60] 謝國斌:〈孟加拉的獨立運動〉,《臺灣國際研究季刊》,14(1),2018,19-34頁.
論文全文檔清單如下︰
1.電子全文連結(11808.100K)
(電子全文不開放)
紙本授權註記:2023/8/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *