|
[1] Al-Faesly, T., Nistor, I., Palermo, D., & Cornett, A. (2011). Simulated tsunami bore impact on an onshore structure. In 20th Canadian Hydrotechnical Conference (pp. 14-17). [2] Aristoff, J. M., Truscott, T. T., Techet, A. H., & Bush, J. W. (2010). The water entry of decelerating spheres. Physics of fluids, 22(3), 032102. [3] Cabot, W., & Moin, P. (2000). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63(1-4), 269-291. [4] Camfield, F. E. (1980). Tsunami Engineering (No. CERC-SR-6). COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS. [5] Chao, W. A., Wu, T. R., Ma, K. F., Kuo, Y. T., Wu, Y. M., Zhao, L., ... & Tsai, Y. L. (2018). The Large Greenland Landslide of 2017: Was a Tsunami Warning Possible?. Seismological Research Letters. [6] Choowong, M., Murakoshi, N., Hisada, K. I., Charusiri, P., Charoentitirat, T., Chutakositkanon, V., ... & Phantuwongraj, S. (2008). 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Marine Geology, 248(3-4), 179-192. [7] Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453-480. [8] De Girolamo, P., Wu, T. R., Liu, P. L. F., Panizzo, A., Bellotti, G., & Di Risio, M. (2007). Numerical simulation of three dimensional tsunamis water waves generated by landslides: Comparison between physical model results, VOF and SPH. In Coastal Engineering 2006: (In 5 Volumes) (pp. 1516-1528). [9] De Rosis, A. (2014). A lattice Boltzmann model for multiphase flows interacting with deformable bodies. Advances in water resources, 73, 55-64. [10] Didier, E., Neves, D. R. C. B., Martins, R., & Neves, M. G. (2014). Wave interaction with a vertical wall: SPH numerical and experimental modeling. Ocean Engineering, 88, 330-341. [11] Ding, W. T., & Xu, W. J. (2018). Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technology, 335, 301-314. [12] Erfanian, M. R., Anbarsooz, M., Rahimi, N., Zare, M., & Moghiman, M. (2015). Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem. Ocean Engineering, 104, 397-404. [13] Francis, P. (1993). Volcanoes: a planetary perspective. Clarendon. [14] Fritz, H. M., Mohammed, F., & Yoo, J. (2009). Lituya Bay landslide impact generated mega-tsunami 50 th Anniversary. In Tsunami Science Four Years after the 2004 Indian Ocean Tsunami (pp. 153-175). Birkhäuser Basel. [15] Gauthier, D., Anderson, S. A., Fritz, H. M., & Giachetti, T. (2018). Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: initial 3D observations. Landslides, 15(2), 327-332. [16] Gong, K., Liu, H., & Wang, B. L. (2009). Water entry of a wedge based on SPH model with an improved boundary treatment. Journal of Hydrodynamics, 21(6), 750-757. [17] Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., ... & Yanagisawa, H. (2007). Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sedimentary Geology, 202(4), 821-837. [18] Goto, K., Okada, K., & Imamura, F. (2010). Numerical analysis of boulder transport by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Marine Geology, 268(1-4), 97-105. [19] Goto, K., Sugawara, D., Ikema, S., & Miyagi, T. (2012). Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sedimentary Geology, 282, 188-198. [20] Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements, 23(8), 645-656. [21] Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26(4), 301-313. [22] Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering, 131(6), 283-297. [23] Gsell, S., Bonometti, T., & Astruc, D. (2016). A coupled volume-of-fluid/immersed-boundary method for the study of propagating waves over complex-shaped bottom: Application to the solitary wave. Computers & Fluids, 131, 56-65. [24] Heinrich, P. (1991). Nonlinear numerical model of landslide-generated water waves. Int. J. Eng. Fluid Mech., 4(4), 403-416. [25] Heinrich, P., Mangeney, A., Guibourg, S., Roche, R., Boudon, G., & Cheminée, J. L. (1998). Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 25(19), 3697-3700. [26] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225. [27] Hu, H. H. (1996). Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase Flow, 22(2), 335-352. [28] Imamura, F., Goto, K., & Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research: Oceans, 113(C1). [29] Kai, G. O. N. G., Hua, L. I. U., & WANG, B. L. (2009). Water entry of a wedge based on SPH model with an improved boundary treatment. Journal of Hydrodynamics, Ser. B, 21(6), 750-757. [30] Kleypas, J. A., McManus, J. W., & Menez, L. A. (1999). Environmental limits to coral reef development: where do we draw the line?. American Zoologist, 39(1), 146-159. [31] Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A, 434(1890), 9-13. [32] Kothe, D., Rider, W., Mosso, S., Brock, J., & Hochstein, J. (1996, January). Volume tracking of interfaces having surface tension in two and three dimensions. In 34th Aerospace Sciences Meeting and Exhibit (p. 859). [33] Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in geophysics (Vol. 18, pp. 237-248). Elsevier. [34] Liao, C. C., Chang, Y. W., Lin, C. A., & McDonough, J. M. (2010). Simulating flows with moving rigid boundary using immersed-boundary method. Computers & Fluids, 39(1), 152-167. [35] Lin, P., & Li, C. W. (2003). Wave–current interaction with a vertical square cylinder. Ocean Engineering, 30(7), 855-876. [36] Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144. [37] Matta, N., Ota, Y., Chen, W. S., Nishikawa, Y., Ando, M., & Chung, L. H. (2013). Finding of Probable Tsunami Boulders on Jiupeng Coast in Southeastern Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 24(1). [38] Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253-266. [39] Monaghan, J. J. (1994). Simulating free surface flows with SPH. Journal of computational physics, 110(2), 399-406. [40] Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., & Triyono, R. (2006). Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia. Earth, Planets and Space, 58(2), 253-258. [41] Nakamura, M., Arashiro, Y., & Shiga, S. (2014). Numerical simulations to account for boulder movements on Lanyu Island, Taiwan: tsunami or storm?. Earth, Planets and Space, 66(1), 128. [42] Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011). Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Computers & geosciences, 37(9), 1391-1399. [43] Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011). Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Marine Geology, 281(1-4), 70-84. [44] Nandasena, N. A. K., Tanaka, N., Sasaki, Y., & Osada, M. (2013). Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?. Marine Geology, 346, 292-309. [45] Nott, J. (1997). Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone. Marine Geology, 141(1-4), 193-207. [46] Nott, J. (2003). Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Science Letters, 210(1-2), 269-276. [47] Ota, Y., Shyu, J. B. H., Wang, C. C., Lee, H. C., Chung, L. H., & Shen, C. C. (2015). Coral boulders along the coast of the Lanyu Island, offshore southeastern Taiwan, as potential paleotsunami records. Journal of Asian Earth Sciences, 114, 588-600. [48] Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., & Wassmer, P. (2010). Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore–onshore model. Marine Geology, 268(1-4), 43-54. [49] Rider, W. J., & Kothe, D. B. (1998). Reconstructing volume tracking. Journal of computational physics, 141(2), 112-152. [50] Scheffers, A., & Kelletat, D. (2003). Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth-Science Reviews, 63(1-2), 83-92. [51] Schwaiger, H. F., & Higman, B. (2007). Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide. Geochemistry, Geophysics, Geosystems, 8(7). [52] Shu, C., Chew, Y. T., & Niu, X. D. (2001). Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry. Physical Review E, 64(4), 045701. [53] Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164. [54] Spiske, M., Böröcz, Z., & Bahlburg, H. (2008). The role of porosity in discriminating between tsunami and hurricane emplacement of boulders—a case study from the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters, 268(3-4), 384-396. [55] Spiske, M., & Bahlburg, H. (2011). A quasi-experimental setting of coarse clast transport by the 2010 Chile tsunami (Bucalemu, Central Chile). Marine Geology, 289(1-4), 72-85. [56] Suzuki, A., Yokoyama, Y., Kan, H., Minoshima, K., Matsuzaki, H., Hamanaka, N., & Kawahata, H. (2008). Identification of 1771 Meiwa Tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders. Quaternary Geochronology, 3(3), 226-234. [57] Swegle, J. W., Hicks, D. L., & Attaway, S. W. (1995). Smoothed particle hydrodynamics stability analysis. Journal of computational physics, 116(1), 123-134. [58] Wang, C. Y., & Liang, V. C. (1997). A packing generation scheme for the granular assemblies with planar elliptical particles. International Journal for Numerical and Analytical Methods in Geomechanics, 21(5), 347-358. [59] Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402. [60] White, F. M. (2017). Fluid Mechanics Fourth Edition. [61] Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. [62] Wu, T. R., Huang, C. J., Wang, C. Y., & Chu, C. R. (2011). Dynamic coupling of multi-phase fluids with a moving obstacle. Journal of Marine Science and Technology, 19(6), 643-650. [63] Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355. [64] Zhang, K., Yan, K., Chu, X. S., & Chen, G. Y. (2010). Numerical simulation of the water-entry of body based on the Lattice Boltzmann method. Journal of Hydrodynamics, Ser. B, 22(5), 872-876. [65] Ned Rozell. The demise of Scotch Cap Lighthouse. (https://news.uaf.edu/demise-scotch-cap-lighthouse) [66] Quirin Schiermeier. Huge landslide triggered rare Greenland mega-tsunami. (https://www.nature.com/news/1.22374) [67] 宇佐美龍夫. (2003). 最新版日本被害地震総覧 [416]-2001:[付] 安政江戸地震大名家被害一覧表. 東京大学出版会. [68] 朱佳仁,「環境流體力學」,科技圖書股份有限公司,2003。 [69] 吳祚任,「台灣海嘯石之運動模擬與古海嘯事件重置」,國家科學委員會應科方案期末報告,2012。 [70] 吳祚任,「台灣自1661年起之11次台灣歷史海嘯紀錄」,2013。 (http://tsunami.ihs.ncu.edu.tw/tsunami/history.htm) [71] 陳曉敏,「卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證」,碩士論文,國立中央大學土木工程學系,2014。 [72] 李珮瑜,「蘭嶼海嘯石與1867年基隆海嘯之動力分析」,碩士論文,國立中央大學水文與海洋科學研究所,2015。 |