|
References 1. Abadie, S., Morichon, D., Grilli, S., & Glockner, S. (2010). Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coastal engineering, 57(9), 779-794. 2. Bellotti, G., Risio, M., Panizzo, A., & Girolamo, P. (2006). Tsunami waves generated by landslides on a plane beach: new three dimensional experiments. In 30th International conference on Coastal Engineering (Vol. 2, pp. 1431-1442). 3. Cho, Y.-S., (1995). Numerical simulations of tsunami and runup. Ph.D. thesis, Cornell University, USA. 4. Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(02), 453-480. 5. Di Risio, M., Bellotti, G., Panizzo, A., & De Girolamo, P. (2009). Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 56(5), 659-671. 6. Eletskii, S. V., Maiorov, Y. B., Maksimov, V. V., Nudner, I. S., Fedotova, Z. I., Khazhoyan, M. G., ... & Chubarov, L. B. (2004). Simulation of surface waves generation by a moving part of the bottom down the coastal slope. Comp. Tech, 9, 194-206. 7. Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 133(6), 442-454. 8. Fritz, H. M. (2001). Lituya Bay case rockslide impact and wave run-up. Science of tsunami Hazards, 19(1), 3-22. 9. Fuhrman, D. R., & Madsen, P. A. (2009). Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coastal Engineering, 56(7), 747-758. 10. Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements, 23(8), 645-656. 11. Grilli, S. T., & Watts, P. (2001, January). Modeling of tsunami generation by an underwater landslide in a 3D-NWT. In The Eleventh International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. 12. Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26(4), 301-313. 13. Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering, 131(6), 283-297. 14. Harbitz, C. B. (1992). “Model simulations of tsunamis generated by the Storegga slides.” Mar. Geol., 105, 1–21. 15. Heidarzadeh, M., Krastel, S., & Yalciner, A. C. (2014). The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences (pp. 483-495). Springer International Publishing. 16. Heinrich, P. (1992). Nonlinear water waves generated by submarine and aerial landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(3), 249-266. 17. Horrillo, J., Wood, A., Kim, G. B., & Parambath, A. (2013). A simplified 3‐D Navier‐Stokes numerical model for landslide‐tsunami: Application to the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(12), 6934-6950. 18. Imamura, F., & Gica, E. C. (1996). Numerical model for tsunami generation due to subaqueous landslide along a coast. Sci. Tsunami Hazards, 14(1), 13-28. 19. Jiang, L., & LeBlond, P. H. (1992). The coupling of a submarine slide and the surface waves which it generates. Journal of Geophysical Research: Oceans, 97(C8), 12731-12744. 20. Keating, B. H., & McGuire, W. J. (2000). Island edifice failures and associated tsunami hazards. Pure and Applied Geophysics, 157(6-8), 899-955. 21. Koike, N. (2011). Estimation of Tsunami Initial Displacement of Water Surface Using Inversion Method with a priori Information. INTECH Open Access Publisher. 22. Liu, P. L. F., Cho, Y. S., Yoon, S. B., & Seo, S. N. (1995). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Tsunami: Progress in prediction, disaster prevention and warning (pp. 99-115). Springer Netherlands. 23. Liu, P. L. F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. School of Civil and Environmental Engineering, Cornell University, USA. 24. Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144. 25. Liu, Y., Shi, Y., Yuen, D. A., Sevre, E. O., Yuan, X., & Xing, H. L. (2009). Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 4(2), 129-137. 26. Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18, 237-248. 27. Lynett, P., & Liu, P. L. F. (2002, December). A numerical study of submarine–landslide–generated waves and run–up. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 458, No. 2028, pp. 2885-2910). The Royal Society. 28. Ma, G., Shi, F., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43, 22-35. 29. Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253-266. 30. Murty, T. S. (1979). Submarine slide‐generated water waves in Kitimat Inlet, British Columbia. Journal of Geophysical Research: Oceans, 84(C12), 7777-7779. 31. Nguyen, P. H., Bui, Q. C., & Nguyen, X. D. (2012). Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast. Natural hazards, 64(1), 311-327. 32. Shokina, N., & Aizinger, V. (2015). On numerical modelling of impulse water waves generated by submarine landslides. Environmental Earth Sciences, 74(11), 7387-7405. 33. Sue, L. P. (2007). Modelling of tsunami generated by submarine landslides. 34. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545. 35. Synolakis, C. E., & Raichlen, F. (2003). Waves and run-up generated by a three-dimensional sliding mass. In Submarine mass movements and their consequences (pp. 113-119). Springer Netherlands. 36. Tan, W. K., Teh, S. Y., & Koh, H. L. (2017). Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure. Environmental Science and Pollution Research, 1-19. 37. Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., & Matsumoto, T. (2002). Prediction of slump generated tsunamis: the July 17th 1998 Papua New Guinea event. Sci. Tsunami Hazards, 20(4), 222-238. 38. Titov, V., & González, F. (2001). Numerical study of the source of the July 17, 1998 PNG tsunami. In Tsunami Research at the End of a Critical Decade (pp. 197-207). Springer Netherlands. 39. Tran, T. D., Phi, T. T., Nguyen, H. H., Nguyen, T. H., & Pham Thi, X. N. (2014). SUBMARINE LANDSLIDE POTENTIAL ON THE CONTINENTAL SHELF IN THE SOUTH CENTER OF VIETNAM. 40. Vogelmann, S. (2001). Sensitivity Study of Numerical Simulations of Tsunamis Generated by Submarine Slope Failures. MS thesis, Univ. of Rhode Island, Kingston, R.I. 41. Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154. 42. Wang, X., & Liu, P. L. F. (2007). Numerical simulations of the 2004 Indian Ocean tsunamis—coastal effects. Journal of Earthquake and Tsunami, 1(03), 273-297. 43. Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water, PhD thesis, Cornell Univ., Ithaka, New York. 44. Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65. 45. Wang, X., & Liu, P. L. F. (2011). An explicit finite difference model for simulating weakly nonlinear and weakly dispersive waves over slowly varying water depth. Coastal Engineering, 58(2), 173-183. 46. Watts, P. (1997). Water waves generated by underwater landslides (Doctoral dissertation, California Institute of Technology). 47. Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 124(3), 127-137. 48. Watts, P. (2000). Tsunami features of solid block underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 126(3), 144-152. 49. Watts, P., & Grilli, S. T. (2003). Tsunami generation by submarine mass failure. Part I: Wavemaker models. Submitted J. Waterway Port Coastal and Ocean Engineering. 50. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402. 51. Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of waterway, port, coastal, and ocean engineering, 131(6), 298-310. 52. Wiegel, R. L. (1955). Laboratory studies of gravity waves generated by the movement of a submerged body. Eos, Transactions American Geophysical Union, 36(5), 759-774. 53. Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Ph.D. Dissertation, Cornell University, USA. 54. Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355. 55. Yoon, S. B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research: Oceans, 107(C10). 56. Zhou Chao, 2016, Interaction analysis of Egg-Shaped particles with fluid, MS thesis, National Central University, Taiwan. 57. https://en.wikipedia.org/wiki/Tsunami 58. http://www-sbras.nsc.ru/ws/CTMM-2004/8204/rep8204.pdf
|