帳號:guest(54.198.58.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:武荷芳
作者(外文):VU HA PHUONG
論文名稱:山崩誘發之海嘯之數值研究
論文名稱(外文):Numerical Study of Landslide-induced Tsunami
指導教授:吳祚任
指導教授(外文):Prof. Tso-Ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:103626602
出版年:106
畢業學年度:105
語文別:英文
論文頁數:128
中文關鍵詞:海嘯海底山崩淺水波方程式頻散效應Navier-Stokes方程式
外文關鍵詞:TsunamiSubmarine landslideShallow water equationsDispersive effectNavier-Stokes equations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾十年來,由山崩引起之海嘯造成諸多災害。在本研究中,使用COMCOT和SPLASH3D研究山崩海嘯 (landslide tsunami),其中COMCOT為2D淺水波方程 (Shallow water equations, SWE) 模式,SPLASH3D為3D納維-斯托克斯方程 (Navier-Stokes equations) 模式。山崩海嘯之特徵為易於表現出頻散行為。為克服此問題,本研究採用淺水波方程中之頻散改良演算法 (dispersive-improved algorithm) ,並與理論與實驗結果進行比對。在理論比對方面,頻散改良演算法之結果與布氏方程 (Boussinesq equations) 之結果比對部分,純粹之淺水波方程式在初始波峰和波谷後之振盪波 (Oscillatory waves) 無法完全符合布氏方程式之結果。相對地,頻散改良演算法可以顯示弱頻散之波紋。此結果對於山崩模擬有助益,因為此法相較於傳統之布氏計算有高效率之優點。在COMCOT裡,使用三種山崩模組,分別為Module 1:Transient seafloor motion、Module 2:Customized profiles of water surface displacement、Module 3:Landslide Model Law of Motion。本研究詳細比對上述三種之模擬結果,並發現模擬結果有可接受之差異。因此,此三種山崩模組可應用在研究越南之潛在山崩海嘯情境。Meridianal斷層系統靠近越南中南沿海地區 (Southern Central Vietnam coast),該斷層引發之海嘯能在數分鐘內襲擊該沿海地區。而此研究結果有助於山崩海嘯之災害防治。此外,本研究亦也使用於SPLASH3D模式求解三維不可壓縮流,並採用移動固體法 (Moving Solid Algorithm),以迭代指定速度和壓力來模擬由固體運動引起之流場變化。但在現實中,3D模式難於應用在實際狀況,因為模擬海嘯為大尺度模擬。然而在現階段仍然使用3D模式之結果來詳細解釋波之物理特性。
關鍵詞:海嘯,海底山崩,淺水波方程式,頻散效應,Navier-Stokes方程式。
A landslide-induced tsunami has increasingly recognized and studied due to major natural disasters caused by this phenomenon in the last decades. In this thesis, both of 2D Shallow water equations model (COMCOT) and 3D Navier-Stokes equations model (SPLASH) were used for studying landslide tsunami. Landslide-induced tsunamis are characterized by shorter wavelengths that tend to display dispersive behavior. The dispersive-improved algorithm in Shallow water equations (SWE) is an option to simulate the landslide tsunami. Series of validations were conducted by comparing to the laboratory experiments. The results of the dispersive-improved in SWE by using Wave Maker are able to match with the results of Boussinesq equations model. It can be seen that the oscillatory waves train behind the initial peak and trough are not fully captured in the simulations obtained with the SWE. On the contrary, the dispersive-improved algorithm in SWE can display weakly dispersive ripples. These may still be useful for modeling landslides due to the high computational efficiency and satisfactory results for a wide class of problems. Multiple landslide modules for landslide induced tsunami are adopted in COMCOT as Transient seafloor motion (Module 1), Customized profiles of water surface displacement (Module 2) and Landslide Model Law of Motion (Module 3). All of landslide modules are able to simulate landslide tsunami with reasonable results which are shown in the comparison between modules. A slight difference can be accepted because of the difference in the mechanisms to generate tsunami waves. Thereby the multiple landslide modules are applied for a scenario potential landslide tsunami in Vietnam. Because the meridianal fault system along Southern Central Vietnam coast is very close to the coast, generated tsunami can hit the coast within minutes. These preliminary results have a contribution to preparatory steps to prevent and respond to natural disasters caused by landslide tsunamis and minimize the damage as well as losses of the coastal communities in Vietnam. Besides, SPLASH3D model which solves 3D incompressible flow with Navier-Stokes equations was also applied. Moving Solid Algorithm is adopted by iterating specified velocity and pressure to simulate the change of the fluid field caused by the movement of the solid. In fact, it is difficult to apply the 3D model to real cases due to a huge scale of tsunami simulation. However, we still use the results from the 3D model to explain in details the physical properties of waves in the current stage.
Key words: Tsunami, Submarine landslide, Shallow water equations, dispersive effect, Navier-Stokes equations.
Table of contents
Abstract i
Table of contents vii
List of Figures viii
List of Tables xiv
Chapter 1: Introduction 1
1.1. Introduction 1
1.2. Motivation and Objectives 3
1.3. Thesis content 5
Chapter 2: Literature Review: Landslide Tsunami 6
2.1. Landslide-induced Tsunami 7
2.2. The equations for landslide motion and prediction tsunami amplitude 11
Chapter 3: Algorithm 14
3.1. COMCOT 15
3.1.1. Transient Seafloor Motion (Module 1) 15
3.1.2. Customized Profiles of Water Surface Displacement (Module 2) 17
3.1.3. Landslide Model Law of Motion (Module 3) 18
3.1.4. Dispersion Effect 20
3.1.5. Governing Equations in COMCOT Modeling 21
3.1.6. Moving Boundary Algorithm (MBA) 24
3.2. SPLASH3D 27
3.2.1. Governing Equations and Turbulence Model 27
3.2.2. Volume of Fluid Method (VOF) 29
3.2.3. Discrete Element Method (DEM) 30
3.2.4. Moving Solid Algorithm (MSA) 30
Chapter 4: Model Validation 33
4.1. Validation of COMCOT modeling 33
4.1.1. Validation of Run-up algorithm 33
4.1.1.1. Synolakis Solitary wave Run-up experiment 33
4.1.1.2. Numerical result 34
4.1.2. Numerical experiment for dispersion effect 37
4.1.3. Eletskij 2004 38
4.1.3.1. Eletskij 2004 experiment 39
4.1.3.2. Numerical result 41
4.1.4. Vertical uplift and horizontal movement of the seafloor 47
4.1.4.1. Vertical uplift of the seafloor 48
4.1.4.2. Horizontal movement of the seafloor 52
4.2. Validation of SPLASH 3D 54
4.2.1. 3D landslide 54
4.2.1.1. 3D landslide experiment 54
4.2.1.2. Numerical result 58
Chapter 5: Potential Submarine landslide-induced Tsunami in Vietnam 65
5.1. Prediction of submarine landslides in the Southern Central Vietnam 65
5.2. A scenario of submarine landslide-induced Tsunami in Vietnam 68
Chapter 6: Conclusion 84
6.1. Conclusion 84
6.2. Future work 85
References 87

References
1. Abadie, S., Morichon, D., Grilli, S., & Glockner, S. (2010). Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coastal engineering, 57(9), 779-794.
2. Bellotti, G., Risio, M., Panizzo, A., & Girolamo, P. (2006). Tsunami waves generated by landslides on a plane beach: new three dimensional experiments. In 30th International conference on Coastal Engineering (Vol. 2, pp. 1431-1442).
3. Cho, Y.-S., (1995). Numerical simulations of tsunami and runup. Ph.D. thesis, Cornell University, USA.
4. Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(02), 453-480.
5. Di Risio, M., Bellotti, G., Panizzo, A., & De Girolamo, P. (2009). Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 56(5), 659-671.
6. Eletskii, S. V., Maiorov, Y. B., Maksimov, V. V., Nudner, I. S., Fedotova, Z. I., Khazhoyan, M. G., ... & Chubarov, L. B. (2004). Simulation of surface waves generation by a moving part of the bottom down the coastal slope. Comp. Tech, 9, 194-206.
7. Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 133(6), 442-454.
8. Fritz, H. M. (2001). Lituya Bay case rockslide impact and wave run-up. Science of tsunami Hazards, 19(1), 3-22.
9. Fuhrman, D. R., & Madsen, P. A. (2009). Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coastal Engineering, 56(7), 747-758.
10. Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements, 23(8), 645-656.
11. Grilli, S. T., & Watts, P. (2001, January). Modeling of tsunami generation by an underwater landslide in a 3D-NWT. In The Eleventh International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
12. Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26(4), 301-313.
13. Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering, 131(6), 283-297.
14. Harbitz, C. B. (1992). “Model simulations of tsunamis generated by the Storegga slides.” Mar. Geol., 105, 1–21.
15. Heidarzadeh, M., Krastel, S., & Yalciner, A. C. (2014). The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences (pp. 483-495). Springer International Publishing.
16. Heinrich, P. (1992). Nonlinear water waves generated by submarine and aerial landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(3), 249-266.
17. Horrillo, J., Wood, A., Kim, G. B., & Parambath, A. (2013). A simplified 3‐D Navier‐Stokes numerical model for landslide‐tsunami: Application to the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(12), 6934-6950.
18. Imamura, F., & Gica, E. C. (1996). Numerical model for tsunami generation due to subaqueous landslide along a coast. Sci. Tsunami Hazards, 14(1), 13-28.
19. Jiang, L., & LeBlond, P. H. (1992). The coupling of a submarine slide and the surface waves which it generates. Journal of Geophysical Research: Oceans, 97(C8), 12731-12744.
20. Keating, B. H., & McGuire, W. J. (2000). Island edifice failures and associated tsunami hazards. Pure and Applied Geophysics, 157(6-8), 899-955.
21. Koike, N. (2011). Estimation of Tsunami Initial Displacement of Water Surface Using Inversion Method with a priori Information. INTECH Open Access Publisher.
22. Liu, P. L. F., Cho, Y. S., Yoon, S. B., & Seo, S. N. (1995). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Tsunami: Progress in prediction, disaster prevention and warning (pp. 99-115). Springer Netherlands.
23. Liu, P. L. F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. School of Civil and Environmental Engineering, Cornell University, USA.
24. Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144.
25. Liu, Y., Shi, Y., Yuen, D. A., Sevre, E. O., Yuan, X., & Xing, H. L. (2009). Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 4(2), 129-137.
26. Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18, 237-248.
27. Lynett, P., & Liu, P. L. F. (2002, December). A numerical study of submarine–landslide–generated waves and run–up. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 458, No. 2028, pp. 2885-2910). The Royal Society.
28. Ma, G., Shi, F., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43, 22-35.
29. Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253-266.
30. Murty, T. S. (1979). Submarine slide‐generated water waves in Kitimat Inlet, British Columbia. Journal of Geophysical Research: Oceans, 84(C12), 7777-7779.
31. Nguyen, P. H., Bui, Q. C., & Nguyen, X. D. (2012). Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast. Natural hazards, 64(1), 311-327.
32. Shokina, N., & Aizinger, V. (2015). On numerical modelling of impulse water waves generated by submarine landslides. Environmental Earth Sciences, 74(11), 7387-7405.
33. Sue, L. P. (2007). Modelling of tsunami generated by submarine landslides.
34. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545.
35. Synolakis, C. E., & Raichlen, F. (2003). Waves and run-up generated by a three-dimensional sliding mass. In Submarine mass movements and their consequences (pp. 113-119). Springer Netherlands.
36. Tan, W. K., Teh, S. Y., & Koh, H. L. (2017). Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure. Environmental Science and Pollution Research, 1-19.
37. Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., & Matsumoto, T. (2002). Prediction of slump generated tsunamis: the July 17th 1998 Papua New Guinea event. Sci. Tsunami Hazards, 20(4), 222-238.
38. Titov, V., & González, F. (2001). Numerical study of the source of the July 17, 1998 PNG tsunami. In Tsunami Research at the End of a Critical Decade (pp. 197-207). Springer Netherlands.
39. Tran, T. D., Phi, T. T., Nguyen, H. H., Nguyen, T. H., & Pham Thi, X. N. (2014). SUBMARINE LANDSLIDE POTENTIAL ON THE CONTINENTAL SHELF IN THE SOUTH CENTER OF VIETNAM.
40. Vogelmann, S. (2001). Sensitivity Study of Numerical Simulations of Tsunamis Generated by Submarine Slope Failures. MS thesis, Univ. of Rhode Island, Kingston, R.I.
41. Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154.
42. Wang, X., & Liu, P. L. F. (2007). Numerical simulations of the 2004 Indian Ocean tsunamis—coastal effects. Journal of Earthquake and Tsunami, 1(03), 273-297.
43. Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water, PhD thesis, Cornell Univ., Ithaka, New York.
44. Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
45. Wang, X., & Liu, P. L. F. (2011). An explicit finite difference model for simulating weakly nonlinear and weakly dispersive waves over slowly varying water depth. Coastal Engineering, 58(2), 173-183.
46. Watts, P. (1997). Water waves generated by underwater landslides (Doctoral dissertation, California Institute of Technology).
47. Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 124(3), 127-137.
48. Watts, P. (2000). Tsunami features of solid block underwater landslides. Journal of waterway, port, coastal, and ocean engineering, 126(3), 144-152.
49. Watts, P., & Grilli, S. T. (2003). Tsunami generation by submarine mass failure. Part I: Wavemaker models. Submitted J. Waterway Port Coastal and Ocean Engineering.
50. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402.
51. Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of waterway, port, coastal, and ocean engineering, 131(6), 298-310.
52. Wiegel, R. L. (1955). Laboratory studies of gravity waves generated by the movement of a submerged body. Eos, Transactions American Geophysical Union, 36(5), 759-774.
53. Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Ph.D. Dissertation, Cornell University, USA.
54. Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355.
55. Yoon, S. B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research: Oceans, 107(C10).
56. Zhou Chao, 2016, Interaction analysis of Egg-Shaped particles with fluid, MS thesis, National Central University, Taiwan.
57. https://en.wikipedia.org/wiki/Tsunami
58. http://www-sbras.nsc.ru/ws/CTMM-2004/8204/rep8204.pdf
論文全文檔清單如下︰
1.電子全文連結(5859.970K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *