|
[1] Richard Soulsby., “Dynamics of marine sands”, 1997. [2] Bagnold, R. A., “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc., Royal Society of London, series A, Vol. 225, pp. 49-63, 1954. [3] Borrero, J., Yeh H., Peterson, C., Chadha, R K., Latha, G. and Katada, T., “Learning from earthquakes: The great Sumatra earthquake and Indian Ocean tsunami of December 26, 2004”, EERI Special Earthquake Report, 2005. [4] Julien, P.Y. and Lan, Y.Q. (1991), “On the rheology of hyperconcentrations,” J. Hyd. Engng., ASCE, Vol. 117, No. 3, p.346-353. [5] O'Brien, J.S. and Julien, P.Y. (1985), “Physical processes of hyperconcentrated sediment flows.” Proc. of the ASCE Specialty Conf. on the Delineation of Landslides, Floods, and Debris Flow Hazards in Utah, Utah Water Research Laboratory, Series UWRL/g-85/03, p.260-279 [6] O'Brien, J.S. and Julien, P.Y. (1988), “Laboratory analysis of mudflow properties.”, Journal of Hydraulic Engineering, Vol.114, No.8, p.877-887. [7] Pierson T.C. (1986) - Flow behaviour of channelized debris flows, Mount St Helens, Washington, in Abrahams A.D. (ed), Hillslope Processes, Allen and Unwin, Boston, p.269-296 [8] Bird, R. B., Dai, G. C., and Yarusso, B. J., “The rheology and flow of viscoplastic materials”, Rev of Chemical Engrg., Vol. 1, No. 1, pp. 1-70, 1983. [9] Brørs, B., “Numerical modeling of flow and scour at pipelines”, J. Hydr. Eng. Vol. 125, pp. 511–523, 1999. [10] Chen, S. C. and Peng S. H., “Two-dimensional numerical model of two-layer shallow water equations for confluence simulation”, Advances in Water Resources, vol. 29, pp. 1608-1617, 2006. [11] Chen, S. C. and Peng S. H., “Two-layer shallow water computation of mud flow intrusions into quiescent water”, Journal of Hydraulic Research, Vol. 45, No. 1 pp. 13-25, 2007. [12] Dey, S., and Barbhuiya, A. K., “Turbulent flow field in a scour hold at a semicircular abutment”, Can. J. Eng., Vol. 32, pp. 213-232, 2005. [13] Ettema, R., Kirkil, G. and Muste, M., “Similitude of large-scale turbulence in experiments on local scour at cylinders”, Journal of Hydraulic Engineering, ASCE Vol. 132, No. 1, pp. 33–40, 2006. [14] Hirt, C. W. and Nichols, B. D., “Volume of Fluid(VOF) method for the dynamics of free surface boundaries”, J. Comput. Phys., pp.201-225, 1981. [15] Hsu, C. A., “Application of Depth-averaged Two-dimensional Numerical Models to Dam Break Flows,” Abstract of XXXI IAHR Congress, Korea, pp. 755-756, 2005. [16] Huang, X. and Garcia, M. H., “A Herschal-Bulkley model for mud flow down a slope”, J. Fluid Mech., Vol. 374, pp. 305-333, 1998. [17] Hadush, S., “Liquefaction induced lateral spread analysis using the CIP method”, Computers and Geotechnics., pp. 549-574, 2001. [18] J.G. Oldroyd., “Two-dimensional plastic flow of a Bingham solid”, Proc. Camb. Phil. Soc., 43: 383-395, 1947. [19] Jan, C. D. Wang, Y.Y. and Han, W.L., “Resistance reduction of debris-flow due to air entrainment”, Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei., pp. 369-372, 2000. [20] Julien, Pierre Y. and Claudia A. Leon S., “Mud Floods, mudflows and debris flows classfication, rheology and structural design” Jornadas de Investigación, 2000. [21] Julien, Pierre Y. and Paris, A., “Mean velocity of mudflows and debris flows” Journal of hydraulic engineering, 2010. [22] Jahangirzadeh, A. et al., “Experimental and Numerical investigation of the Effect of Different Shapes of Collars on the Reduction of Scour around a Single Bridge Pier”, 2014. [23] Khosronejad, A. et al., “Experimental and computational investigation of local scour around bridge piers”, Advances in Water Resources, Vol. 37, pp. 73-85, 2012. [24] Lee, S. O., Sturm, T., “Scaling issues for laboratory modeling of bridge pier scour.”, Procedding of 4th International Conference on Scour and Erosion, 5–7 Nov., pp. 111–115, Tokyo, Japan, 2008. [25] Liu, K. F. and Mei, C.C., “Slow spreading of a sheet of Bingham fluid on an inclined plane” , J. Fluid Mech. Vol. 207, pp. 505-529, 1989. [26] Liu, X. F. and García, M. H., “A three-dimensional numerical model with free water surface and mesh deformation for local sediment scour” , Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 4, pp. 203-217, 2008. [27] Liu, X. F. and García, M. H., “Computational fluid dynamics modeling for the design of large primary settling tanks” , Journal of Hydraulic Engineering, Vol. 137, No. 3, pp. 343-355, 2011. [28] Raudkivi, Arved J., “Loose Boundary Hydraulics” , 1998. [29] MacArthur, R. C., and Schamber, D. R., “Numerical methods for simulating mudflows.” Proc., 3rd Int. Symp. on River Sedimentation, Univ. of Mississippi, Oxford, Miss., pp. 1615-1623, 1986. [30] Major, J. J. and Pierson, T., “Debris flow rheology: Experimental analysis of fine-grained slurries. ” Water resource research, vol. 28, No,3, pp. 841-857, 1992. [31] Melville, B. W., and Raudkivi, A. J., “Flow characteristics in local scour at bridge piers” , Journal of Hydraulic Research, Vol. 15, No. 4, pp. 373-380, 1977. [32] Melville, B. W., “Local scour at bridge abutments,” J. Hydraulic Division, ASCE, Vol. 118, No. 4, pp. 615-631, 1992. [33] O’Brien, J. S. et al., “Two dimensional water flood and mudflow simulation”, Journal of Hydraulic Engineering, Vol. 119, No.2, pp. 244-261, 1993. [34] O’Brien, J. S. and Julien, P. Y., “On the importance of mudflow routing”, Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, Aug. 16-18, pp. 677-686, 2000. [35] Olsen, N. R. B., and Melaaen, M. C., “Three-dimensional calculation of scour around cylinder”, J. Hydraul. Eng., Vol. 119, No. 9, pp. 1048-1054, 1993. [36] Olsen, N. R. B., and Kjellesvig, H. M., “Three-dimensional numerical flow modeling for estimation of maximum local scour depth”, J. Hydraul. Res., Vol. 36, No. 4, pp. 579-590, 1998. [37] Richardson, J. E. and Panchang, V.G., “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Eng., Vol. 124, No. 5, pp. 530-540, 1998. [38] Schamber, D. R., and MacArthur, R. C., ”One-dimensional model for mudflows.” Proc., ASCE specialty conference on hydr. and hydro. in the small comp. age. Vol. 2, ASCE, New York, N.Y., pp. 1334-1339, 1985. [39] Sumer, B. M., and Fredsøe, J., “Wave scour around a large vertical circular cylinder.” J. Waterway, Port, Coastal, Ocean Eng., Vol. 127(3), pp. 125–134, 2001. [40] Takahashi, T., “Mechanical characteristics of debris flow”, Journal of Hydraulic Engineering, Vol. 104(HY8), pp. 1153-1169, 1978. [41] Takahashi, T., “Debris flow on prismatic open channel”, Journal of Hydraulic Engineering, Vol. 106(HY8), pp. 381-396, 1980. [42] Takahashi, T., “Debris flows: Mechanics”, Prediction and Countermeasures, Draft, 2006. [43] Wan, Z. and Wang, Z., “Hyperconcentrated Flow”, Balkema, 1994. [44] Whipple, K. X., “Open-channel flow of Bingham fluids: Applications in debris-flow research”, The Journal of Geology, Vol. 105, pp. 243-262, 1997. [45] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004. [46] Wu, T. R. et al., ”Dynamic coupling if multi-phase fluids with a moving obstacle”, Journal of Marine Science and Technology, Vol. 19, No. 6, pp. 643-650, 2011. [47] Zhao, M., Cheng, L. and Zang, Z., “Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents”, Coastal Engineering, Vol. 57, pp. 709–721, 2010. [48] Zhao, Z. and Fernando, H. J. S., “Numerical simulation of scour around pipelines using an Euler-Euler coupled two phase model”, Env. Fluid Dyn., Vol. 7, No. 2, pp. 121-142, 2007. [49] 行政院農委會水土保持局,中華水土保持學會,「水土保持手冊」,2005年11月 [50] 王文江,”水利工程中之泥沙問題”,中興工程科技研究發展基金會,2013年5月 [51] 郭啟文,”泥漿體及礫石泥漿體之流變特性”,碩士論文,國立成功大學水利及海洋工程研究所,2002。 [52] 趙啟宏,”土石流之數值模擬及流變參數特性之探討”,碩士論文、國立台灣大學土木工程學研究所,2004。 [53] 蔡孟芳,”非均勻固體顆粒對賓漢流體流變參數之影響”,碩士論文,國立成功大學水利及海洋工程研究所,2009。 [54] 王志賢,”粗粒材料對土石流流變特性影響之實驗研究”,碩士論文,國立成功大學水利及海洋工程研究所,2000。 [55] 王志賢,”泥沙顆粒組成對黏性土石流體流變參數影響之研究”,博士論文,國立成功大學水利及海洋工程研究所,2007。 [56] 吳政貞,”土石流流況數值分析-以溪頭為例”,碩士論文,國立台灣大學土木工程學研究所,2003。 [57] 林銘郎,”土石流災害之地質環境探討”,土石流地質調查與防災對策研討會論文集,第6-1-6-28頁,2003。 [58] 彭思顯,”泥流及土石流湧浪進入河道所引致之地形變化”,博士論文,國立中興大學水土保持學系,2004。 [59] 陳孟志,”以三維賓漢流數值模式模擬海嘯沖刷坑之發展”,碩士論文,國立中央大學水文與海洋科學研究所,2011。 [60] 柯昱明,”三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用”,碩士論文,國立中央大學水文與海洋科學研究所,2012。 [61] 陳俊斌,”貓空土石流之模擬與分析研究”,碩士論文,國立台灣科技大學營建工程學系,2010。 [62] 詹錢登,”土石流概論”,科技圖書股份有限公司,2000。 [63] 曹英明,”FLO-2D模式於土石流流況模擬之應用”,碩士論文,朝陽科技大學營建工程學系,2005。 [64] 詹錢登、王志賢,”土石流流動機制之研究-黏性土石流流動特性及其流動演算之研究(I)”,行政院國家科學委員會補助專題研究計畫成果報告,NSC 90-2526-z-006-003,2002。 [65] 詹錢登、王志賢,”粗顆粒泥石材料對土石流流變特性影響之實驗研究”,第十一屆水利工程研討會,K17-K21,2000。 [66] 詹錢登、徐郁超、陳建宇、黃聰憲,”橋墩前設置環圈堆保護工周為流場特性之數值模擬分析”,臺灣水利,第59卷,第2期,2011。 [67] 熊剛,”黏性泥石流之運動機理”,博士論文,北京清華大學水利系,1996。 [68] 沈壽長,”土石流流變特性的試驗研究”,水利學報,第9期,第7-13頁,1998。 [69] 余昌益,”高含砂水流流變參數之研究”, 國立成功大學水利及海洋工程研究所碩士論文,1996。 [70] 張藝馨,”不均勻圓柱橋墩之局部沖刷研究”,碩士論文,國立中央大學土木工程研究所,2000。 [71] 費祥俊,”高含沙水流的顆粒組成及流動特性”,第二屆河流泥沙國際研討會,第296-308頁,1983。 [72] 費祥俊、朱程清,”高含沙水流運動中的賓漢切應力”,泥沙研究,第4期,第13-23頁,1991。 [73] 費祥俊,”漿體與粒狀物料輸送水力學”,清華大學出版社,北京,1991。 [74] 錢寧、萬兆惠,”泥沙運動力學”,科學出版社,北京,1983。 [75] 王裕宜、詹錢登、嚴璧玉,”泥石流體結構和流變特性”,湖南科學技術出版社,2001。 [76] 費祥俊、舒安平,”泥石流運動機理與災害防治”, 清華大學出版社,2004。
|