帳號:guest(54.225.38.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:李宇弘
作者(外文):Yu-hung Lee
論文名稱:非連續賓漢流變模式之參數訂定與應用
論文名稱(外文):non
指導教授:吳祚任
指導教授(外文):Tso-ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:102626005
出版年:105
畢業學年度:104
語文別:中文
論文頁數:196
中文關鍵詞:流體體積法賓漢流模式高濃度泥沙流
外文關鍵詞:VOFBingham modelhyperconcentrated sediment flows
相關次數:
  • 推薦推薦:0
  • 點閱點閱:149
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由海底地震所引發之海嘯常導致沿海地區受創嚴重,而海嘯湧潮所夾帶之洪水亦會於建築物周圍產生局部沖刷災害,此外豪雨或強降雨形成之高濃度泥沙流,如泥流 (Mudflow)或夾帶大量泥沙之洪水 (Mud Flood),亦會造成人命傷亡、建築物及橋梁等公共建設毀損。在探討局部沖刷與高濃度泥流時,由於泥沙之運動特性與賓漢流體之流動特性相似,本研究發展一流變模式來模擬山崩及海嘯或洪水所引發之局部沖刷,此模式源於包含壓密現象 (Phenomenon of Compaction) 之傳統賓漢模式,然而此壓密現象存在於許多泥沙及沉積物問題中,且通常由沉降或壓密作用所造成。此效應對於山崩滑移之表面形狀及局部沖刷之沖刷剖面至關重要。然而傳統賓漢模式缺乏描述此種機制之名詞。因此本文將賓漢模式轉換為賓漢雙黏性流模式 (Bingham constitutive model) ,並加入額外參數〖τ_y〗^' 、(γ_y ) ̇來表達壓密作用,〖τ_y〗^'表示夯實材料之降伏應力 (Compacted yield stress) ,(γ_y ) ̇為降伏應變,若無壓密,〖τ_y〗^'則轉為降伏應力τ_y,且模式將還原為傳統賓漢模式。當考慮壓密作用時,τ_y將會增加並轉為〖τ_y〗^',造成流變曲線不連續,此模式稱為非連續之賓漢雙黏性流模式 (Discontinuous Bi-viscous Model) ,簡稱DBM。本模式求解三維Navier-Stokes方程式,並以VOF法追蹤流體介面之運動。模式所需提供之參數有降伏應力τ_y、黏滯係數μ_b及夯實降伏應力〖τ_y〗^'。由於降伏應力與黏滯係數尚無系統之決定方式,且需仰賴流變儀進行流變分析,此不僅在試體採樣過程中容易破壞原有之結構,在應用上亦有不便之處。為此,本研究參考Raudkivi (1998) 所提供之賓漢流變參數經驗公式發展流變參數決定法 (Rheological Parameter Determining Method , RPDM)。在提供泥沙粒徑與比重後,即可求得一組適當之流變參數,掌握適切之初始猜值。由於傳統賓漢模式中並無探討夯實土砂之降伏應力,因此本文則透過經驗式得出適當之初始猜值。本研究並進行三維泥流型山崩與局部沖刷模擬。在三維泥流型山崩方面,模擬1966年發生於美國德州之石膏尾礦潰壩之真實案例。首先,本文藉由 Jeyapalan (1983) 利用流變儀分析求得之降伏應力、黏滯係數等流變參數進行三維模擬,並探討夯實土砂之降伏應力對於山崩行為機制之影響。模擬結果顯示夯實之降伏應力將改變潰壩流體潰壩之時間點、流動過程、堆積型態與溢淹距離。其後藉由模式結果進一步分析該案例中賓漢流體之流動行為,包含流速、強剪區與弱剪區之分布等,由結果中可以清楚看出賓漢流體於強剪區與弱剪區之分布情形與速度之關係,顯示本研究所發展之非連續賓漢雙黏性流模式(DBM)可模擬複雜之三維高濃度泥沙流問題。而由模擬結果亦可得知本模式能適切表達泥流之運動過程及堆積現象,並與觀測結果對照有良好之一致性。接著,本研究透過 Jeyapalan (1983) 所提供之泥沙比重與中值粒徑,利用流變參數決定法推得模式所需之降伏應力與黏滯係數,進行三維泥流運動之動態模擬。本文並將模擬結果與 Jeyapalan (1983) 提供之流變參數所得之數值結果進行比較與討論分析。由探討中發現,利用流變參數決定法求得之流變參數帶入模式後,其潰壩流體之堆積型態、溢淹距離與實例照片及觀測數據更加接近,顯示該法之實用性及模式之準確性。在局部沖刷與沖刷坑發展方面,本研究模擬半圓柱之沖刷實驗 (Dey and Barbhuiya, 2005) ,透過文中所提供之泥沙粒徑與比重,計算出流變參數之初始猜值。模擬結果顯示本研究推得之參數亦可適切地模擬底床沖淤之過程並預測沖刷坑之最大深度,且誤差在10%以內,突顯本研究方法之實用性。
The tsunami caused by an undersea earthquake often leads to coastal areas hit seriously, and the flood entrained by tsunami surges often brings local scour around the buildings. Moreover, the high concentrations of sediment flow formed by heavy rain, such as Mudflow or Mud flood, often causes live losses or damages on structures during typhoon season. The flood induced by heavy rainfalls may result in local scour around the bridge. In order to understand more about the movement characteristics of sediment, which are similar to ones of the Bingham fluid, we newly developed a rheology model for simulating the natural hazards of landslide and local scour induced by a tsunami or severe floods in this study. The model originated from the conventional Bingham constitution model included tamping effect, which exists in most of the mud or sediment problems and usually is caused by the settlement and compaction processes.
The tamping effect is crucial to the shape of the slip surface and scour profile in the landslide and local scour problems, respectively. However, the conventional Bingham model lacks the mechanism of describing this prenominal. Hence, we converted the Bingham model into the Bi-viscous model, adding additional parameters, Yield_solid and Gamma_yield, to present the tamping effect. Yield_solid indicated the yield stress of compacted material; Gamma_yield indicated the yield strain rate. Without the tamping effect, the Yield_solid went to the yield stress, and the model went back to the conventional Bingham model. While the tamping effect was taken into account, the Yield_solid increased and made the rheology curve discontinuous. The novel model is called Discontinuous Bi-viscous Model, shorten as DBM. It solves 3D Navier-Stokes equation and tracking the movement of fluid interface with Volume of the Fluid method. The provided parameters in the model are Bingham yield stress、Bingham viscosity and yield strain rate. However, there is no systematical method for determining these parameters and need to rely on rheometer. For this reason, the present study developing Rheological Parameter Determining Method (RPDM) by way of the empirical formula of Raudkivi (1998) . It can be inquired into reasonable rheological parameters after providing sediment grain size and proportion, and grasp the appropriate initial value. The traditional models do not investigate yield strain rate, in this paper, we can get the appropriate initial value by numerical method.

The present study carrying out three-dimensional Mudflow landslides and local scour simulation on the cylinder. In three-dimensional Mudflow landslides, we apply our model to simulate one real case, 1966 dam break of gypsum tailing in Texas. First, we use yield stress and viscosity analyzed by Jeyapalan (1983) to simulate, and discuss the influence of yield strain to the mechanisms of landslides. The results show that yield strain will change the time of dam break, the process of mobile, stacking patterns and inundation distance.
From the simulation results, we know that DBM is not only express the movement of the process and the accumulation of mud flow but also has a good consistency with observations. With the grain size and proportion of sediment which provided by Jeyapalan (1983) , we can obtain the rheological parameters through the rheological parameter determining a method to carry out the dynamic simulation of three-dimensional mudflow motions. To verify our methods with Jeyapalan (1983) . Simulation results show that the parameters calculated by the present study could express the motion of mudflow and accumulation phenomenon appropriately, and well compare with experimental results. Regarding the issue of local scour, we study on the Turbulent flow field in a scour hole at a semicircular abutment (Dey and Barbhuiya, 2005) . The simulation result shows that the parameters calculated by our study could also describe the seabed erosion and the final development of scouring pit, and the maximum depth of scouring pit of error less than 10%, in addition to the good comparison with scouring pit patterns.
摘要 iii
Abstract vi
誌謝 viii
目錄 ix
第一章 緒論 1
1-1 研究背景 1
1-2 沖刷文獻回顧 3
1-3 泥流型山崩文獻回顧 9
1-4 賓漢流變參數之文獻回顧 12
1-5本文架構 18
第二章 研究方法與模式介紹 19
2-1 研究方法 19
2-2 賓漢流理論 20
2-3 模式介紹 25
2-3-1 控制方程式 (Governing Equation) 25
2-3-2 有限體積法 (Finite Volume Method) 25
2-3-3 流體體積法 (Volume of Fluid) 26
2-4 流變參數之定義與計算 32
第三章 泥流潰壩案例模擬與分析 38
3-1 數值模式設定 39
3-2 模擬結果 44
3-3 流變參數決定法(應用於石膏潰壩) 88
第四章 沖刷案例模擬 113
4-1 半圓柱橋墩沖刷實驗驗證 113
第五章 結論與建議 128
5-1 結論 128
5-2 建議 129
參考文獻 130
附錄A 非連續賓漢雙黏性流模式之解析解驗證 138
附錄B 新增石膏潰壩案例之數值結果與網格收斂性分析 142
B.1 夯實降伏應力τ_0'=1.0×109 (Pa) 之數值結果 142
B.2 石膏潰壩案例(網格收斂性分析) 149
B.3 石膏潰壩案例(賓漢雙黏性流) 154
附錄C 實際案例之沖刷坑動態模擬 161
附錄D 小型沖刷實驗 167
附錄E 口試書面答覆表 177
[1] Richard Soulsby., “Dynamics of marine sands”, 1997.
[2] Bagnold, R. A., “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc., Royal Society of London, series A, Vol. 225, pp. 49-63, 1954.
[3] Borrero, J., Yeh H., Peterson, C., Chadha, R K., Latha, G. and Katada, T., “Learning from earthquakes: The great Sumatra earthquake and Indian Ocean tsunami of December 26, 2004”, EERI Special Earthquake Report, 2005.
[4] Julien, P.Y. and Lan, Y.Q. (1991), “On the rheology of hyperconcentrations,” J. Hyd. Engng., ASCE, Vol. 117, No. 3, p.346-353.
[5] O'Brien, J.S. and Julien, P.Y. (1985), “Physical processes of hyperconcentrated sediment flows.” Proc. of the ASCE Specialty Conf. on the Delineation of Landslides, Floods, and Debris Flow Hazards in Utah, Utah Water Research Laboratory, Series UWRL/g-85/03, p.260-279
[6] O'Brien, J.S. and Julien, P.Y. (1988), “Laboratory analysis of mudflow properties.”, Journal of Hydraulic Engineering, Vol.114, No.8, p.877-887.
[7] Pierson T.C. (1986) - Flow behaviour of channelized debris flows, Mount St Helens, Washington, in Abrahams A.D. (ed), Hillslope Processes, Allen and Unwin, Boston, p.269-296
[8] Bird, R. B., Dai, G. C., and Yarusso, B. J., “The rheology and flow of viscoplastic materials”, Rev of Chemical Engrg., Vol. 1, No. 1, pp. 1-70, 1983.
[9] Brørs, B., “Numerical modeling of flow and scour at pipelines”, J. Hydr. Eng. Vol. 125, pp. 511–523, 1999.
[10] Chen, S. C. and Peng S. H., “Two-dimensional numerical model of two-layer shallow water equations for confluence simulation”, Advances in Water Resources, vol. 29, pp. 1608-1617, 2006.
[11] Chen, S. C. and Peng S. H., “Two-layer shallow water computation of mud flow intrusions into quiescent water”, Journal of Hydraulic Research, Vol. 45, No. 1 pp. 13-25, 2007.
[12] Dey, S., and Barbhuiya, A. K., “Turbulent flow field in a scour hold at a semicircular abutment”, Can. J. Eng., Vol. 32, pp. 213-232, 2005.
[13] Ettema, R., Kirkil, G. and Muste, M., “Similitude of large-scale turbulence in experiments on local scour at cylinders”, Journal of Hydraulic Engineering, ASCE Vol. 132, No. 1, pp. 33–40, 2006.
[14] Hirt, C. W. and Nichols, B. D., “Volume of Fluid(VOF) method for the dynamics of free surface boundaries”, J. Comput. Phys., pp.201-225, 1981.
[15] Hsu, C. A., “Application of Depth-averaged Two-dimensional Numerical Models to Dam Break Flows,” Abstract of XXXI IAHR Congress, Korea, pp. 755-756, 2005.
[16] Huang, X. and Garcia, M. H., “A Herschal-Bulkley model for mud flow down a slope”, J. Fluid Mech., Vol. 374, pp. 305-333, 1998.
[17] Hadush, S., “Liquefaction induced lateral spread analysis using the CIP method”, Computers and Geotechnics., pp. 549-574, 2001.
[18] J.G. Oldroyd., “Two-dimensional plastic flow of a Bingham solid”, Proc. Camb. Phil. Soc., 43: 383-395, 1947.
[19] Jan, C. D. Wang, Y.Y. and Han, W.L., “Resistance reduction of debris-flow due to air entrainment”, Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei., pp. 369-372, 2000.
[20] Julien, Pierre Y. and Claudia A. Leon S., “Mud Floods, mudflows and debris flows classfication, rheology and structural design” Jornadas de Investigación, 2000.
[21] Julien, Pierre Y. and Paris, A., “Mean velocity of mudflows and debris flows” Journal of hydraulic engineering, 2010.
[22] Jahangirzadeh, A. et al., “Experimental and Numerical investigation of the Effect of Different Shapes of Collars on the Reduction of Scour around a Single Bridge Pier”, 2014.
[23] Khosronejad, A. et al., “Experimental and computational investigation of local scour around bridge piers”, Advances in Water Resources, Vol. 37, pp. 73-85, 2012.
[24] Lee, S. O., Sturm, T., “Scaling issues for laboratory modeling of bridge pier scour.”, Procedding of 4th International Conference on Scour and Erosion, 5–7 Nov., pp. 111–115, Tokyo, Japan, 2008.
[25] Liu, K. F. and Mei, C.C., “Slow spreading of a sheet of Bingham fluid on an inclined plane” , J. Fluid Mech. Vol. 207, pp. 505-529, 1989.
[26] Liu, X. F. and García, M. H., “A three-dimensional numerical model with free water surface and mesh deformation for local sediment scour” , Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 4, pp. 203-217, 2008.
[27] Liu, X. F. and García, M. H., “Computational fluid dynamics modeling for the design of large primary settling tanks” , Journal of Hydraulic Engineering, Vol. 137, No. 3, pp. 343-355, 2011.
[28] Raudkivi, Arved J., “Loose Boundary Hydraulics” , 1998.
[29] MacArthur, R. C., and Schamber, D. R., “Numerical methods for simulating mudflows.” Proc., 3rd Int. Symp. on River Sedimentation, Univ. of Mississippi, Oxford, Miss., pp. 1615-1623, 1986.
[30] Major, J. J. and Pierson, T., “Debris flow rheology: Experimental analysis of fine-grained slurries. ” Water resource research, vol. 28, No,3, pp. 841-857, 1992.
[31] Melville, B. W., and Raudkivi, A. J., “Flow characteristics in local scour at bridge piers” , Journal of Hydraulic Research, Vol. 15, No. 4, pp. 373-380, 1977.
[32] Melville, B. W., “Local scour at bridge abutments,” J. Hydraulic Division, ASCE, Vol. 118, No. 4, pp. 615-631, 1992.
[33] O’Brien, J. S. et al., “Two dimensional water flood and mudflow simulation”, Journal of Hydraulic Engineering, Vol. 119, No.2, pp. 244-261, 1993.
[34] O’Brien, J. S. and Julien, P. Y., “On the importance of mudflow routing”, Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, Aug. 16-18, pp. 677-686, 2000.
[35] Olsen, N. R. B., and Melaaen, M. C., “Three-dimensional calculation of scour around cylinder”, J. Hydraul. Eng., Vol. 119, No. 9, pp. 1048-1054, 1993.
[36] Olsen, N. R. B., and Kjellesvig, H. M., “Three-dimensional numerical flow modeling for estimation of maximum local scour depth”, J. Hydraul. Res., Vol. 36, No. 4, pp. 579-590, 1998.
[37] Richardson, J. E. and Panchang, V.G., “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Eng., Vol. 124, No. 5, pp. 530-540, 1998.
[38] Schamber, D. R., and MacArthur, R. C., ”One-dimensional model for mudflows.” Proc., ASCE specialty conference on hydr. and hydro. in the small comp. age. Vol. 2, ASCE, New York, N.Y., pp. 1334-1339, 1985.
[39] Sumer, B. M., and Fredsøe, J., “Wave scour around a large vertical circular cylinder.” J. Waterway, Port, Coastal, Ocean Eng., Vol. 127(3), pp. 125–134, 2001.
[40] Takahashi, T., “Mechanical characteristics of debris flow”, Journal of Hydraulic Engineering, Vol. 104(HY8), pp. 1153-1169, 1978.
[41] Takahashi, T., “Debris flow on prismatic open channel”, Journal of Hydraulic Engineering, Vol. 106(HY8), pp. 381-396, 1980.
[42] Takahashi, T., “Debris flows: Mechanics”, Prediction and Countermeasures, Draft, 2006.
[43] Wan, Z. and Wang, Z., “Hyperconcentrated Flow”, Balkema, 1994.
[44] Whipple, K. X., “Open-channel flow of Bingham fluids: Applications in debris-flow research”, The Journal of Geology, Vol. 105, pp. 243-262, 1997.
[45] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004.
[46] Wu, T. R. et al., ”Dynamic coupling if multi-phase fluids with a moving obstacle”, Journal of Marine Science and Technology, Vol. 19, No. 6, pp. 643-650, 2011.
[47] Zhao, M., Cheng, L. and Zang, Z., “Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents”, Coastal Engineering, Vol. 57, pp. 709–721, 2010.
[48] Zhao, Z. and Fernando, H. J. S., “Numerical simulation of scour around pipelines using an Euler-Euler coupled two phase model”, Env. Fluid Dyn., Vol. 7, No. 2, pp. 121-142, 2007.
[49] 行政院農委會水土保持局,中華水土保持學會,「水土保持手冊」,2005年11月
[50] 王文江,”水利工程中之泥沙問題”,中興工程科技研究發展基金會,2013年5月
[51] 郭啟文,”泥漿體及礫石泥漿體之流變特性”,碩士論文,國立成功大學水利及海洋工程研究所,2002。
[52] 趙啟宏,”土石流之數值模擬及流變參數特性之探討”,碩士論文、國立台灣大學土木工程學研究所,2004。
[53] 蔡孟芳,”非均勻固體顆粒對賓漢流體流變參數之影響”,碩士論文,國立成功大學水利及海洋工程研究所,2009。
[54] 王志賢,”粗粒材料對土石流流變特性影響之實驗研究”,碩士論文,國立成功大學水利及海洋工程研究所,2000。
[55] 王志賢,”泥沙顆粒組成對黏性土石流體流變參數影響之研究”,博士論文,國立成功大學水利及海洋工程研究所,2007。
[56] 吳政貞,”土石流流況數值分析-以溪頭為例”,碩士論文,國立台灣大學土木工程學研究所,2003。
[57] 林銘郎,”土石流災害之地質環境探討”,土石流地質調查與防災對策研討會論文集,第6-1-6-28頁,2003。
[58] 彭思顯,”泥流及土石流湧浪進入河道所引致之地形變化”,博士論文,國立中興大學水土保持學系,2004。
[59] 陳孟志,”以三維賓漢流數值模式模擬海嘯沖刷坑之發展”,碩士論文,國立中央大學水文與海洋科學研究所,2011。
[60] 柯昱明,”三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用”,碩士論文,國立中央大學水文與海洋科學研究所,2012。
[61] 陳俊斌,”貓空土石流之模擬與分析研究”,碩士論文,國立台灣科技大學營建工程學系,2010。
[62] 詹錢登,”土石流概論”,科技圖書股份有限公司,2000。
[63] 曹英明,”FLO-2D模式於土石流流況模擬之應用”,碩士論文,朝陽科技大學營建工程學系,2005。
[64] 詹錢登、王志賢,”土石流流動機制之研究-黏性土石流流動特性及其流動演算之研究(I)”,行政院國家科學委員會補助專題研究計畫成果報告,NSC 90-2526-z-006-003,2002。
[65] 詹錢登、王志賢,”粗顆粒泥石材料對土石流流變特性影響之實驗研究”,第十一屆水利工程研討會,K17-K21,2000。
[66] 詹錢登、徐郁超、陳建宇、黃聰憲,”橋墩前設置環圈堆保護工周為流場特性之數值模擬分析”,臺灣水利,第59卷,第2期,2011。
[67] 熊剛,”黏性泥石流之運動機理”,博士論文,北京清華大學水利系,1996。
[68] 沈壽長,”土石流流變特性的試驗研究”,水利學報,第9期,第7-13頁,1998。
[69] 余昌益,”高含砂水流流變參數之研究”, 國立成功大學水利及海洋工程研究所碩士論文,1996。
[70] 張藝馨,”不均勻圓柱橋墩之局部沖刷研究”,碩士論文,國立中央大學土木工程研究所,2000。
[71] 費祥俊,”高含沙水流的顆粒組成及流動特性”,第二屆河流泥沙國際研討會,第296-308頁,1983。
[72] 費祥俊、朱程清,”高含沙水流運動中的賓漢切應力”,泥沙研究,第4期,第13-23頁,1991。
[73] 費祥俊,”漿體與粒狀物料輸送水力學”,清華大學出版社,北京,1991。
[74] 錢寧、萬兆惠,”泥沙運動力學”,科學出版社,北京,1983。
[75] 王裕宜、詹錢登、嚴璧玉,”泥石流體結構和流變特性”,湖南科學技術出版社,2001。
[76] 費祥俊、舒安平,”泥石流運動機理與災害防治”, 清華大學出版社,2004。
論文全文檔清單如下︰
1.電子全文連結(9418.235K)
(本資料20200121後電子全文公開)
紙本授權註記:2021/2/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *