帳號:guest(54.80.137.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:李珮瑜
作者(外文):Pei-Yu Li
論文名稱:蘭嶼海嘯石與1867年基隆海嘯之動力分析
論文名稱(外文):Lanyu Tsunami Boulders and Dynamic Analysis of 1867 Keelung Tsunami
指導教授:吳祚任
指導教授(外文):Tso-Ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:102626004
出版年:104
畢業學年度:103
語文別:中文
論文頁數:163
中文關鍵詞:蘭嶼海嘯石海嘯源逆向追蹤法海底山崩流固耦合移動固體法1867年基隆海嘯
外文關鍵詞:LanyuTsunami bouldersTsunami Reverse Tracing MethodSubmarine landslideFluid-solid couplingMoving Solid Method1867 Keelung tsunami event
相關次數:
  • 推薦推薦:0
  • 點閱點閱:408
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要分為兩部分進行討論,其一為海嘯源逆向追蹤法(Tsunami Reverse Tracing Method, TRTM)之理論驗證及探討蘭嶼珊瑚礁石之可能來源;其二為山崩觸發海嘯之三維數值模擬,並應用於1867年基隆海嘯之還原與分析。
  TRTM之理論建立在線性假設下,本文驗證其符合疊加理論(Kramers, 1957)及點源離散理論(Fresnel and Chim, 1816)。Ota et al.(2014)於台灣蘭嶼北端之六個位置發現珊瑚礁石,經放射性定年後,其年齡介於距今200年至6000年間,極有可能為古海嘯事件之證據,其中最年輕之珊瑚礁石被認為可能與1771年八重山地震事件有關。本研究利用TRTM探討蘭嶼珊瑚礁石之可能來源,並使用COMCOT求解線性淺水波方程式,對可能之情境案例進行模擬與分析。
  過去曾以TRTM對1867年基隆海嘯事件進行分析,並進一步使用影響強度分析法(Impact Intensity Analysis, IIA)於近岸處進行補強,結果顯示位於基隆東北方之基隆陸棚為海底山崩之潛在來源之一(李, 2014)。本研究以三維模式SPLASH3D結合移動固體法(Moving Solid Method, MSM)針對海底山崩型海嘯之案例進行數值模擬。根據Watts et al.(2005)將滑落過程中有無形變加以區分為塊體崩落(Slides)以及泥沙崩塌(Slumps)兩種形式。模擬結果顯示影響海嘯初始最大負波之主要因素為塊體初始位置及體積。
  結果顯示蘭嶼珊瑚礁石之可能海嘯源位於綠島南方,且其與1771年八重山地震事件之關聯性較小。而造成1867年基隆海嘯事件之可能山崩情境為沿基隆海谷之設置,於金山沿岸及基隆沿岸皆可觀察到大於6.5 m之波高,與鄭(2013)之研究相符。
In this study, two topics are discussed. The first topic is the theory validation of Tsunami Reverse Tracing Method (TRTM) and the study of the possible sources of the coral boulders in Lanyu. The second topic is the 3-D simulation of landslide generated tsunami and its application to the reconstruction of the 1867 Keelung tsunami event.
  TRTM is established based on the linear hypothesis, and validated to accord with superposition principle (Kramers, 1957) and Huygens-Fresnel principle (Fresnel and Chim, 1816). Recently, six sites of coral boulders have been founded on Lanyu, Taiwan. According to the radiometric dating results, the ages of the boulders are between ca.6000 years BP and ca.200 years BP. The youngest boulder was suggested to be related to the 1771 Yaeyama earthquake event (Ota et al., 2014). Hence, we implemented the Tsunami Reverse Tracing Method (TRTM) to find the possible tsunami sources and solve the linear shallow water equation by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model to perform the scenario analysis.
  In the past, the 1867 Keelung tsunami event was studied by the TRTM, and the Impact Intensity Analysis (IIA) method was employed to quantify the tsunami impact from each discretized computational domain. The result showed that three possible landslide scenarios of the 1867 Keelung tsunami event were triggered in the Mein-Hwa Canyon, Keelung sea valley, and Keelung Shelf (Lee, 2014). In this study, we use a 3D fluid-solid coupling model, SPLASH3D to combine the Moving Solid Method (MSM) to validate and simulate the case of submarine slides. According to Watts et al. (2005), the Submarine Mass Failure (SMF) was categorized into Slides and Slumps. The result indicates that the impact of the initial maximum negative wave is effected by the initial location and volume of the SMF.
  For the coral boulders of Lanyu, the scenario set up in southern Green Island is agreeable with the site of boulders. It seems unlikely that the boulders are related to the 1771 Yaeyama earthquake event because of the weak signal of the numerical wave gauges. The results show that the possible landslide scenarios of the 1867 Keelung tsunami event occurred along the Keelung sea valley. The wave height higher than 6.5 m in Keelung coastal is observed in this study.
摘要 ................................................................................................................ I
Abstract ........................................................................................................ II
致謝 ............................................................................................................. IV
目錄 .............................................................................................................. V
圖目錄 ...................................................................................................... VIII
表目錄 ...................................................................................................... XIII
第一章 緒論 ................................................................................................. 1
1-1 研究動機 ....................................................................................... 1
1-2 海嘯源逆向追蹤法 ....................................................................... 3
1-3 海底山崩 ....................................................................................... 5
1-4 研究方法 ....................................................................................... 7
1-5 本文架構 ....................................................................................... 8
第二章 模式介紹與數值方法 ................................................................... 10
2-1 COMCOT ..................................................................................... 10
2-2 海嘯源逆向追蹤法(Tsunami Reverse Tracing Method, TRTM)
..................................................................................................................... 11
2-3 影響強度分析法(Impact Intensity Analysis, IIA) ................ 16
2-4 SPLASH3D ................................................................................... 18
2-4-1 統御方程式(Governing Equation) ............................ 18 VI

2-4-2 流體體積法(Volume of Fluid, VOF) ........................ 19
2-4-3 有限體積法(Finite Volume Method) ........................ 22
2-4-4 大渦模式(Large Eddy Simulation, LES) .................. 23
2-4-5 隱 式 速 度 壓 力 耦 合 法 ( Implicit Velocity-Pressure
Coupling Method) ........................................................ 25
第三章 TRTM 之方向性分析與探討蘭嶼海嘯石之可能來源 .............. 27
3-1 方向性分析 ................................................................................. 27
3-1-1 點源離散分析 ................................................................. 28
3-1-2 地震走向對海嘯傳遞方向之分析 ................................ 34
3-1-3 能量通量分布與地震走向之影響分析 ........................ 38
3-2 以 TRTM 探討蘭嶼海嘯石之可能來源 .................................... 46
3-3 1867 年基隆海嘯 ......................................................................... 61
第四章 海底山崩之驗證與模擬分析 ....................................................... 63
4-1 塊體崩落(Slides) .................................................................... 65
4-1-1 模式驗證 ......................................................................... 66
4-1-2 塊體崩落之模擬結果 ..................................................... 77
4-2 泥沙崩塌(Slumps) ................................................................. 99
4-2-1 模式驗證 ......................................................................... 99
4-2-2 泥沙崩塌之模擬與敏感度分析................................... 106
4-3 1867 年基隆海嘯之數值模擬 ................................................... 130
第五章 結論與建議 ................................................................................. 136 VII

5-1 TRTM 之方向性分析並探討蘭嶼海嘯石之可能來源 ............ 136
5-2 海底山崩之驗證與模擬分析 ................................................... 137
參考文獻 ................................................................................................... 138
口試書面答覆表 ....................................................................................... 142
[1] Assier, R., Mariotti, C., Heinrich, P., “Numerical Simulation of Submarine Landslides and their Hydraulic Effects”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 123, No. 4, 1997.
[2] Born, M., and Wolf, E., “Principles of Optics 7th (expanded)”, Cambridge University Press, ISBN 9780521642224, 2011.
[3] Choi, B.-H., Pelinovsky, E., Kim, K.-O. and Lee, J.-S., “Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption”, Natural Hazard and Earth System Sciences,Vol. 3, pp. 321–332, 2003.
[4] Calder, E., Young, S., Steve, R., Sparks, J., and MVO staff, “Montserrat Volcano Observatory, Special Report 06”, The Boxing day collapse, 1998.
[5] Cabot, W., and Moin, P., “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow.” Flow Turb. Combust. 63, 269-291, 2000.
[6] Yoko Ota, J. Bruce H. Shyu, Chung-Che Wang, Ling-Ho Chung, Huey-Cheng Lee, Chuan-Chou Shen, “Geological paleotsunami studies in Taiwan-present situation and problems”, The 7th South China Sea Tsunami Workshop, p. 19, 2014.
[7] Davies, H. L., “Tsunami PNG 1998 - extracts from earth talk”, University of Papua New Guinea, 1999.
[8] Dean, R. G. and Dalrymple, R. A., “Water Wave Mechanics for Engineers and Scientists”. World Scientific Pub. Co., Teaneck, NJ. , 1991.
[9] Deardorff, J. W., “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number”, Journal of Fluid Mech., Vol. 41, NO. 2, pp. 453–480, 1970.
[10] Francis, P., “Volcanoes, A Planetary Perspective”, Oxford University Press Inc., NY, 1993.
[11] Fritz, H. M., Hager, W. H., and Minor H. –E., “Lituya Bay case: Rockslide inpact and wave run-up”, Sci. Tsunami Hazards, pp. 3-22, 2001.
[12] Fresnel and Chim, A., Chim, A., “Oeuvres”, Phys (2), Vol. 1, pp. 89-129, 1816.
[13] Grilli, S. T., and Watts, P., “Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 131, No. 6, 2005.
[14] Heinrich, P., Mangeney, A., Guibourg, S., and Roche, R., “Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles”, Geophysical Research Letters, Vol. 25, No. 19, pp. 3697-3700, 1998.
[15] Heinrich, P., “Nonlinear Numerical Model of Landslide-generated Water Waves”, International Journal of Engineering Fluid Mechanics, pp. 403-416, 1991.
[16] Hsu, S.-K., Yeh, Y.-C., Jean-Claude Sibuet, Doo, W.-B., Tsai, C.-H., “A mega-splay fault system and tsunami hazard in the southern Ryukyu subduction zone”, Earth and Planetary Science Letters,362, pp. 99-107, 2013.
[17] Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., DE Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E., “ Tsunami in Papua New Guinea was as intense as first thought”, EOS. Trans. Am. Geophys., Union 80, 101, 104-105, 1999.
[18] Kramers. H. A., “Quantum Mechanics”, publisher Dover, 1957, pp. 62 ISBN 978-0-486-66772-0, 1957.
[19] Li, L., Huang, Z.-H. and Qiu, Q., “Numerical simulation of the erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean Tsunami”, Natural Hazard, 2014.
[20] Leonard, A., “Energy cascade in large eddy simulation of turbulent fluid flow”. Adv. Feopgys. Vol. 18A, pp. 237-248, 1974.
[21] Lin, P., and Li, C.-W., “Wave-current interaction with a vertical square cylinder.” Ocean Engineering, 30, pp. 855-876, 2003.
[22] Liu, P.L.-F., Wu, T.-R., Raichlen, F., Synolakis, C., and Borrero, J.,
“Runup and rundown generated by three-dimensional sliding masses”, Journal of Fluid Mechanics, 536, pp. 107-144, 2005.
[23] Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., Triyono, R., “Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia”, Earth Planet Space, Vol. 58, pp. 253–258, 2006.
[24] Mei, C.-C., Chan, I-C., and Liu, Philip L.-F. et al., “Long waves through emergent coastal vegetation”, Journal of Fluid Mech.,Vol. 687, pp. 461–491, 2011.
[25] Miyazawa, K., Goto, K., Imamura, F. (2012) Re-evaluation of the 1771 Meiwa Tsunami source model, southern Ryukyu Islands, Japan. In: Yamada, Y.; Kawamura, K.; Ikehara, K.; Ogawa, Y.;Urgeles, R.; Mosher, D.; Chaytor, J.; Strasser, M. (Eds.), Advances in Natural and Technological Hazards Research, Submarine Mass Movements and Their Consequences,Springer, Vol. 31, 497-506.
[26] Nakamura, M., “Source fault model of the 1771 Yaeyama tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation”, Pure Appl. Geophys., 163, 41– 54, doi:10.1007/s00024-005-0007-9., 2006.
[27] Nakamura, M., “Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami”, Geophysical Research Letters, Vol. 36, L19307, doi:10.1029/2009GL039730, 2009.
[28] Rider, W. J. and Kothe, D. B., “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, pp.112–152, 1998.
[29] Synolakis, C. E., Bardet, J. P., Borrero, J. C., Davies, H., Okal, E. O., Silver, E. A., Sweet, and S., Tappin, D. R., “ Slump origin of the 1998 Papua New Guinea Tsunami”, Proc. Royal Society, London, Ser. A, 458, 763-789, 2002.
[30] Schwab, W. C., Lee, H. J., and Twichell, D. C., “Submarine landslides: Selected studies in the U.S. exclusive economic zone”, Bull. 2002, U.S. Geol. Surv., U.S., Dept. of Interior, Washington, DC, 1993.
[31] Smagorinsky, J., “General circulation experiments with the primitive equations: I. The basic equations. Mon.” Weather Rev. 91, pp. 99-164, 1963.
[32] Tso-Ren Wu, “Deterministic Study on the Potential Large Tsunami Hazard in Taiwan”, Journal of Earthquake and Tsunami,6,3, (SCIE), 2012。
[33] Tocher, D., Miller, D.J., “Field observations on effects of Alaskan earthquake of 10 July, 1958”, Science 129:394-395, 1959.
[34] Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., and Tappin, D. R., “Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model”, Natural Hazards and Earth System Sciences, European Geosciences Union, pp.391-402, 2003.
[35] Wang, X.-M. and Liu, Philip L.-F., “An explicit finite difference model for simulating weakly nonlinear and weakly dispersive waves over slowly varying water depth”, Coastal Eng.,Vol. 58, pp. 173–183, 2011.
[36] Wu, T.-R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004.
[37] 吳祚任,「台灣海嘯石之運動模擬與古海嘯事件重置」,國家科學委員會應科方案期末報告,2012。
[38] 李俊叡,「台灣海嘯速算系統建置暨1867年基隆海嘯事件之還原與分析」,碩士論文,國立中央大學水文與海洋科學研究所,2014。
[39] 柯利鴻,「重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬」,碩士論文,國立中央大學水文與海洋科學研究所,2014。
[40] 馬國鳳,許樹坤,吳祚任,陳伯飛,陳建志,「台灣核電廠海嘯危害機率研究」,行政院原子能委員會核能研究所,2014(未發表)。
[41] 鄭世楠,塵封的裂痕歷史地震系列演講-第一講1867年基隆地震,TEC台灣地震科學中心,2013。
論文全文檔清單如下︰
1.電子全文連結(15310.440K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *