帳號:guest(54.158.198.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:李俊叡
作者(外文):Chun-Juei Lee
論文名稱:台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
論文名稱(外文):The Development of Taiwan Tsunami Fast Calculation System and Reconstructing of the 1867 Keelung Tsunami Event
指導教授:吳祚任
指導教授(外文):Tso-ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:101626012
出版年:103
畢業學年度:102
語文別:中文
論文頁數:170
中文關鍵詞:COMCOT海嘯速算系統歷史海嘯1867年基隆海嘯事件
外文關鍵詞:COMCOTTsunami early warning systemhistorical tsunami1867 Keelung tsunami even
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本研究分為海嘯速算系統之建置和分析1867年基隆海嘯事件兩部份。在海嘯速算系統建置部份中,其目標為建立一套可靠、快速且低成本之海嘯預警系統,本研究以COMCOT (Cornell Multi-grid Coupled Tsunami Model)海嘯數值模式為核心進行開發,該模式經OpenMP平行處理提升計算速度,本模式整合Yen and Ma, 2011提出之地震尺度關係式並建立海溝走向資料庫協,助模式於地震發生後第一時間震源機制解尚未明確時進行海嘯模擬。本研究以shell script使整套流程能自動化執行,本文章以2011年日本海嘯事件來進行準確性較驗和結果展示,整套流程可於3分鐘內完成10小時之模擬。
在分析1867年基隆海嘯事件部份中,本研究發展一套有系統之方法分析與還原此事件。該場海嘯事件暗示台灣北海岸三座核電廠具有潛在海嘯危機。過去研究普遍認為該事件是由山腳斷層一場規模Mw7.0之地震所引發,然而並無任何證據顯示如此規模之地震可造成7公尺高之海嘯波高。考慮台灣北海岸複雜之海底地形和旺盛之火山活動,本研究認為此海嘯事件之波高極可能是受地震或是海底火山噴發產生之海底山崩所加劇。為進行有系統之分析,並評估可能之潛在海嘯來源,本研究提出海嘯源逆向追蹤法(Tsunami Reverse Tracking Method)尋找對北海岸具衝擊性之海嘯源。潛在海嘯源逆向追蹤法的理論建立在線性假設下,海嘯波的傳遞具有雙向性,並使用COMCOT求解線性淺水波方程式,快速排除不可能之海嘯源。本研究更進一步提出影響強度分析法(Impact Intensity Analysis),除了量化各潛在海嘯源對研究區域之威脅強度外,更可以針對海嘯源逆向追蹤法於近岸處呈現模糊處進行補足。最後依海嘯源逆向追蹤法和影響強度分析法之結果設計情境案例模擬,本文展示七處海底山崩和五座火山情境案例,模擬結果與歷史文獻資料波高作比對,海底山崩情境中最有可能者來自於棉花峽谷、基隆海谷或基隆陸棚,火山情境最有可能者來自於基隆市西北方35公里處之火山。
This study was divided in two part, design a fast tsunami warning system and analysis the 1867 Keelung tsunami event. In first part, this study aims to develop reliable, fast, and low-cost system which is able to predict the tsunami wave height automatically based on the preliminary earthquake parameters. The Cornell Multi-grid Coupled Tsunami Model (COMCOT) was chosen as the kernel as it had been widely validated. The original source code has been parallelized by OpenMP to speed up the computing capability. We added a sophisticated source-scaling relationship proposed by Yen and Ma (2011) and a strike-dip trench database for generating tsunami source in the beginning stage of the tsunami event. A shell script was coded to execute the entire process automatically. We demonstrate the accuracy and performance by the 2011 Japan tsunami event. The warning products can be obtained in 3 minutes for a 10-hour simulation. In second part, this study uses a systematic method to analyse and reconstruct the 1867 Keelung event. The 1867 Keelung tsunami event is important to Taiwan because it indicates that three nuclear power plants nearby are under the threat of tsunami attack. Previous studies consider that this tsunami might be generated by an Mw7.0 earthquake along the Shanchiao Fault. However, there is no evidence showing the relationship between this mild seismic activities and the 7-m large tsunami wave height. We aimed to find out the potential tsunami source through the numerical analysis. Considering the steep bathymetry and intense volcanic activity along the Keelung coast, the tsunami might be triggered by not only an earthquake, but also by a submarine landslide or by a volcanic eruption which were able to increase the tsunami height dramatically. However, numbers of scenarios impeded the careful analysis. For this, we developed the Tsunami Reverse Tracking Method (TRTM) based on the linear hypothesis of tsunami wave propagation, to narrow down the possible source locations of tsunami. The Cornell Multi-grid Coupled Tsunami Model (COMCOT) was adopted for solving the shallow water equations. We also developed an Impact Intensity Analysis (IIA) method to quantify the tsunami impact from each discretized computational domain by calculating the maximum wave height. After that, a series of scenario studies were performed. Each scenario has to satisfy the geological feature and the simulated tsunami has to agree with the wave height recorded in the literatures. 7 landslide scenarios and 5 volcano scenario are showed in this study. The result shows most possible landslide scenario of the 1867 tsunami event was from Mein-Hwa Canyon, Keelung sea valley or Keelung Shelf. The most possible volcano scenario is from 35 km northwest of Keelung city.
目錄
摘要 I
Abstract III
誌謝 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言及研究動機 1
1-2 海嘯預警系統之文獻回顧 3
1-3 1867年基隆海嘯與歷史海嘯事件文獻回顧 5
1-4 研究方法 9
1-5 本文架構 11
第二章 模式介紹和數值方法 17
2-1 模式簡介 17
2-1-1 統御方程式(Governing Equation) 17
2-1-2 多層套疊巢狀網格系統(multi-grid nested system) 19
2-1-3 移動邊界法(moving boundary scheme) 20
2-1-4 地震參數決定 21
2-2 海嘯速算系統自動化流程 23
2-2-1 海嘯警報單 24
2-2-2 巢狀網格配置 25
2-3 海嘯源逆向追蹤法(Tsunami Reverse Tracing Method) 25
2-4 影響強度分析法(Impact Intensity Analysis, IIA) 28
第三章 海嘯速算系統建置 38
3-1 速算系統模式驗證 38
3-2 巢狀網格收斂性分析 48
3-3 情境模擬成果展示 50
3-3-1 日本2011年地震海嘯情境案例展示 50
3-3-2 太平洋西岸海嘯情境模擬成果展示 69
3-4 小結 77
第四章 1867年基隆海嘯還原與分析 78
4-1 前人案例研究 78
4-2 海嘯源逆向追蹤法(TRTM)和影響強度分析法(IIA)之分析 81
4-2-1 海嘯源逆向追蹤法驗證 81
4-2-2 以孤兒海嘯展示海嘯源逆向追蹤法之應用 84
4-2-3 海嘯源逆向追蹤法(TRTM)分析結果 88
4-2-4 影響強度分析法(IIA)之結果 90
4-3 情境海嘯源設定 93
4-4 情境海嘯源結果 95
4-5 敏感度分析 132
4-6 小結 138
第五章 結論與建議 139
參考文獻 142
附錄A、口試書面答覆表 148
[1] Brian F. Atwater, Musumi Satoko, Satake Kenji, Tsuji Yoshinobu, Ueda Kazue, David K. Tamaguchi, “The Orphan Tsunami of 1700-Japanese clues to a parent earthquake in North America”, University of Washington, 2011.
[2] B. H. Choi, E. Pelinovsky, K.O. Kim and J .S. Lee, 2003. “Simulation of the trans-oceanic tsunami propogation due to the 1883 Krakatau volcanic eruption”, Natural Hazard and Earth System Science, 321-332, 2003.
[3] Bourgeois J, “Geologic effects and records of tsunamis. In Bernard EN, Robinson AR (eds)”, The Sea: Tsunamis, vol 15. Harvard University Press, London, England, pp 53-91, 2009.
[4] Chang-Hwa Chen and Jason Jiun-San Shen, “A Refind Historical Record of Volcanic Eruption around Taiwan: Tectonic Implications in the Arc-continent Collision Area”, TAO, Vol. 16, No. 2, 331-343, June 2005.
[5] COMCOT, http://ceeserver.cee.cornell.edu/pll-group/comcot.htm
[6] Dean, R. G. and Dalrymple, R. A., “Water Wave Mechanics for Engineers and Scientists”. World Scientific Pub. Co., Teaneck, NJ. , 1991.
[7] Earthquake Hazards Program, USGS: http://earthquake.usgs.gov/
[8] Fujii, Y. and Satake, K., “Tsunami source of the 2004 Sumatra Andaman earthquake inferred from tide gauge and satellite data”, Bulletin of the Seismological,Society of America 97(1A), S192–S207, 2007
[9] Fyer, G. J., Holschuh, N. D., Wang. D, Becker, N. C., “ Improving tsunami warning with a rapid linear model”, Amertican Geophysical Union, Fall Meeting 2010, abstract#NH33A-1378, 2010.
[10] Guan-Yu Chen, Chin-Chu Liu, Cheng-Chung Yao, “ Forecast system for offshore water surface elevation with inundation map integrated for tsunami early warning”, IEEE journal of ocean engineering, 2014.
[11] Goto, K., Shinnozaki, T., Minoura, K., Okada, K., Sugawara, D. and Imamura, F., “Distribution of boulders at Miyara Bay of Ishigaki Island, Japan: A flow characteristic indicator of tsunami and storm waves”, Island Arc, Vol. 19, pp. 412–426, 2010a.
[12] Huang, Zhenhua, Tso-Ren Wu, and Syamsidik,. “Recent Research on Tsunami Hazards for Sumatra and the South China Sea Area”, Journal of Earthquake and Tsunami, 7, 1303001:1-3, 2013.
[13] Jaffe BE, Gelfenbuam G, “A simple model for calculating tsunami flow speed from tsunami deposits”, SedG 200 (3-4):347-361, 2007.
[14] Kanamori, H., “The energy release in great earthquakes”, Journal of Geophysical Research, 1977.
[15] Kenji Satake, Nanayama F, Yamaki S, Tanioka Y, Hirata K “Variability Among Tsunami Sources in the 17th–21st Centuries Along the Soutehrn Kuril Trench”. In: Satake K (ed) Tsunamis, vol 23, Advances in Natural and Technological Hazards Research. Springer Netherlands, pp 157-170., 2005.
[16] Kenji Satake, Kunlhlko Shimazaki, Yoshinobu Tsuji, Kazue Ueda, “Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700”,nature, vol379, 18, January, 1996.
[17] Kenji Satake, Kelin Wang, Brian F. Atwater, “Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami description”, Journal of Geophysical research, vol. 108, NO. B11, 2535, 2003.
[18] Kuo-Fong, Ma and Mon-Feng, Lee, “Simulation of Historical Tsunamis in the Taiwan Region”, TAO, Vol.8, No. 1, pp. 13-30, March 1997.
[19] Liguang Sun, Xin Zhou, Wen Huang, Xiaodong Liu, Hong Yan, Zhouqing Xie, Zijun Wu, Sanping Zhao, Da Shao, Wenqing Yang, “Preliminary evidence for a 1000-year-old tsunami in the South China Sea”, Scientific Reports 3, No. 1655, 2013.
[20] Linlin Li, Zhenhua Huang , Qiang Qiu, “Numerical simulation of the erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean Tsunami”, Natural Hazards, 2014.
[21] Matta, N., Ota, Y., Chen,W.-S., Nishikawa, Y., Ando M. and Chung L.-H., “Finding Tsunami Boulders on Jiupeng Coast in Southeastern Taiwan”, Terr. Atomos. Ocean. Sci., Vol. 24,pp. 159-163, 2013.
[22] Macinnes BT, Weiss R, Bourgeois J, Pinegina TK, “Slip distribution of the 1952 Kamchatka great earthquake based on near-field tsunami deposits and historical records”, Bulletin of the Seismological Society of America 100 (4):1695-1709, 2010.
[23] Martin ME, Weiss R, Bourgeois J, Pinegina TK, Houston H, Titov VV, “Combining constraints from tsunami modeling and sedimentology to untangle the 1969 Ozernoi and 1971 Kamchatskii tsunamis”, Geophys Res Lett 35, 2008.
[24] Ming-Sheng Lin, Chien-Li Hsiao, Chien-Hsin Chang and Huan-Chi Liu, 2006. The Parameters of The 1867 Tsunami in Chinshan, Northern Taiwan, 2006 Annual Meeting of Geological Society Located in Miaoli Program and Abstracts, pp. 96.
[25] Moore AL, McAdoo BG, Ruffman A, “Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland” SedG 200 (3-4),pp. 336-346, 2007.
[26] Morton RA, Gelfenbaum G, Jaffe BE, “Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples”, SedG 200 (3-4):184-207, 2007.
[27] National Data Buoy Center, National Oceanic and Atmospheric Administration, http://www.ndbc.noaa.gov/.
[28] Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S, “Unusually large earthquakes inferred from tsunami deposits along the Kuril trench”, Nature 424 (6949):660-663, 2003.
[29] Nandasena, N.A.K., Paris, R. and Tanaka, N., “Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)”, Marine Geology, Vol. 281, pp. 70–84, 2011.
[30] NOAA, http://nctr.pmel.noaa.gov/model.html.
[31] Okada, Y., “Surface deformation due to shear and tensile faults in a half-space”. Bull. Seismol. Soc. Am., 75, pp. 1135-1154, 1985.
[32] Popinet, S., “Adaptive modelling of long-distance wave propagation and fine scale flooding during the Tohoku tsunami”, Natural Hazards and Earth System Sciences 12(4), 1213–1227, 2012.
[33] Satoshi Ide, Gregory C. Beroza, David R. Shelly, Takahiko Uchide, “ A scaling law for slow earthquake”, vol 447, pp76-79, 2007.
[34] Seno T., “The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate”, Tectonophysics 42, pp. 209–226, 1977.
[35] Seno T., S. Stein, and A. E. Gripp., “A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data”, Journal of Geophysical Research, 98, pp.17941-17948, 1993.
[36] Smith DE, Foster IDL, Long D, Shi S, “Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits”, SedG 200 (3-4):362-371, 2007.
[37] Spiske M, Weiss R, Bahlburg H, Roskosch J, Amijaya H, “The TsuSedMod inversion model applied to the deposits of the 2004 Sumatra and 2006 Java tsunami and implications for estimating flow parameters of palaeo-tsunami”, SedG 224 (1-4):29-37, 2010.
[38] Spiske M., Böröcz, Z. and Bahlburg, H., “The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean”, Earth and Planetary Science Letters, Vol. 268, pp. 384–396, 2008.
[39] Tatehata, H. “The new tsunami warning system of the Japan Meteorological Agency Perspectives on Tsunami Hazard Reduction”, Springer, Netherlands, pp. 175–188, 1997.
[40] Tso-Ren, Wu, “Deterministic Study on the Potential Large Tsunami Hazard in Taiwan”, Journal of Earthquake and Tsunami, 6(3), 1250034:1-18, 2012
[41] Tso-Ren, Wu, Po-Fei Chen, Wu-Ting Tsai, and Guan-Yu Chen, “Numerical Study on Tsunamis Excited by 2006 Pingtung Earthquake Doublet”, Terrestrial, Atmospheric, and Oceanic Sciences, 19, 705-715, 2008.
[42] Tso-Ren, Wu and Hui-Chuan Huang, “Modeling Tsunami Hazards from Manila Trench to Taiwan”, Journal of Asian Earth Sciences, 36(1), 21-28, 2009.
[43] W. H. K. Lee, F. T. Wu and Carl Jacobsen, “A Catalog of Historical Earthquakes in China Compiled From Recent Chinese Publications”, Bullentin of Seismological Society of America. Vol. 66, No. 6, pp. 2003-2016.,1976.
[44] Xiao-Ming Wang and Philip L.-F. Liu, “Numerical Simulations of the 2004 Indian Ocean Tsunamis Coastal effects”, Journal of Earthquake and Tsunami, Vol. 1, No.3,pp. 273-297, 2007.
[45] Yi-Ben, Tsai, “A Study of Disastrous Earthquakes in Taiwan”, 1683-1895, Bullentin of Institude of Earth Sciences Academica Sincica, Vol. 5, PP. 1-44, 1985.
[46] Yin-Tung Yen and Kuo-Fong Ma, ”Source-Scaling Relationship for M 4.6–8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan” Bull. Seismol. Soc. Am.101, pp. 464–481., 2011.
[47] Yu, S. B., L. C. Kuo, R. S. Punongbayan, and E. G. Ramos,. “GPS observation of crustal deformation in the Taiwan-Luzon region”, Geophysical Research. Letters 26, pp. 923–926, 1999.
[48] 莊釗鳴、謝凱旋、盧詩丁、臧振華、鮑曉鷗、陳柏村、朱傚祖、劉彥求、林燕慧、黃志遠、姜彥麟,「基隆和平島考古探坑海嘯沉積物調查」,地球科學聯合學術研討會,2013。
[49] 徐明同,「海嘯所引起之災害」,氣象學報,第27卷,第一期,頁1-15,1981。
[50] 吳祚任,「潛在大規模地震與海嘯對核電廠及台灣沿海地區之影響」,國家科學委員會應科方案期末報告,2011。
[51] 陳冠宇,「海嘯預警與溢淹潛勢圖數值模擬之回顧與探討」,海洋工程學刊,第12卷,第一期,頁61-74,2013
[52] 鄭世楠,塵封的裂痕歷史地震系列演講-第一講1867年基隆地震,TEC台灣地震科學中心,2013。
[53] 鄭世楠,1694年台北地震與1867年基隆地震的探討,2011土木工程與物業管理研討會,2011。
論文全文檔清單如下︰
1.電子全文連結(11635.718K)
(電子全文 已開放)
紙本授權註記:2016/9/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *