帳號:guest(          離開系統
字體大小: 字級放大   字級縮小   預設字形  


作者(外文):Li-hung Ko
論文名稱(外文):Reconstructing the Paleotsunami Event at Jiupeng, Taiwan, from Tsunami Boulders and Simulation of Interaction Between Solitary Wave and Submerged Circular Plate
指導教授(外文):Tso-Ren WuPhilip Li-Fan Liu
外文關鍵詞:Tsunami BoulderTsunamiTsunami Reverse Tracing MethodFluid-solid CouplingSolitary waveSubmerged Breakwater
  • 推薦推薦:0
  • 點閱點閱:1534
  • 評分評分:*****
  • 下載下載:50
  • 收藏收藏:0
台灣東南方之九棚灣發現三顆海嘯石(Matta et al., 2013),為5000年內古海嘯事件之證據。本文利用海嘯石之位置與地形,以波浪動力學為基礎重建該海嘯事件,並探討其他可能遭受影響之地區。首先,我們利用潛在海嘯源逆向追蹤法(Tsunami Reverse Tracing Method, TRTM)找出可能對研究區域造成影響之海嘯源。TRTM是以線性波理論及頻散關係(dispersion relationship)為基礎所發展,藉由此法,能迅速排除不可能之情境,節省大量之分析時間。其後將可能之海嘯源進行情境分析,並以三維流固耦合模式SPLASH3D進行模擬,以求得海嘯湧潮高度、速度與海嘯石推移距離之關係,並推估可能之情境海嘯波高。根據TRTM之結果,僅來自琉球、馬尼拉和亞普海溝所產生之海嘯有可能傳播至九棚灣,模擬之情境海嘯規模範圍為Mw 8.1 ~ 9.3。
在海嘯減災部分,本文以三維數值模擬SPLASH3D,探討孤立波通過平板型潛堤之消能行為,首先與美國康乃爾大學Prof. Philip L.-F. Liu所提供之解析解及實驗數據比對(Lo and Liu, 2014),數值解、解析解及實驗數據有相當程度之一致性。完成模式驗證後,我們對孤立波與水下圓板型潛堤之交互作用進行三維之數值模擬,並輔以解析解(Lo and Liu, personal communication)進行校驗,比對結果大致良好,但當模擬案例之非線性強度增強時,數值解與解析解開始產生明顯之偏差,孤立波在通過圓板時,波形變得陡峭、近乎破碎,探討不同浸沒深度之案例對於流場之影響時,發現圓板主要扮演壓力屏蔽之角色,且在浸沒深度越小時影響越明顯,屏蔽壓力之效果,使得流場中形成許多局部流場,且在圓板邊緣產生明顯之環狀渦流現象;此外,浸沒深度越小,對於能量消散與透射波波高之影響有越明顯之趨勢。
Three tsunami boulders were found at the Jiupeng coast in the Southeastern Taiwan (Matta et al., 2013), and can be the evidence of a paleotsunami event happened within 5000 years. In this study, we intended to reconstruct this tsunami event and learn the potential large tsunami that might attack the southern Taiwan. The first step is to find the possible tsunami sources by means of tsunami reverse tracing method (TRTM). TRTM is developed based on the linear wave theory and dispersion relationship. By TRTM, we can also rule out the impossible ones. As the probable tsunami sources are located, the second step is to setup the tsunami scenarios, and to eliminate the cases with results contradicted with the relationship between bore height, or velocity, and displacement of tsunami boulder, which can be derived from 3D fluid-solid two-way coupling model. The result of reverse tracing method shows that only the tsunamis from Ryukyu, Manila, and Yap Trenches are able to reach the coast of Jiupeng.
In terms of the tsunami hazard mitigation, a coastal structure may be able to protect the shore from being attacked by a tsunami. In this thesis, we intend to study the energy dissipation from a circular plate in a solitary long wave by means of three-dimensional numerical simulations, SPLASH3D. For the model validation, we performed 2D simulations with a solitary wave interacting with a flat plat and compared our results with the analytical solutions and experimental data proposed by Prof. Philip L.-F. Liu at Cornell University, USA (Lo and Liu, 2014). We found that the numerical solutions were very close to the analytical solutions and experiment data. After that, we utilized our model to the 3D simulation of interaction between solitary wave and submerged circular plate. The simulations were also compared with the analytical solutions (Lo and Liu, personal communication). When the nonlinearity increased, deviation between simulation and analytical result became more obvious. A steep and nearly breaking wave was observed above the circular plate. Cases with different submergence were compared, and the circular plate play a role of pressure shield, especially in cases with smaller submergence, which caused a pressure gradient induced local flow field and a strong vortex rings were also presented around the edge of the plate. Besides, smaller submergence had greater effect on energy dissipation and wave height of transmission wave.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 海嘯石文獻回顧 7
1-3 波浪與潛沒平板交互作用研究回顧 13
1-4 研究方法 17
1-5 本文架構 19
第二章 模式簡介與數值方法 20
2-2 SPLASH3D 25
2-2-1 控制方程式(Governing Equation) 25
2-2-2 有限體積法(Finite Volume Method) 26
2-2-3 流體體積法(Volume of Fluid) 27
2-2-4 大渦模式(Large Eddy Simulation) 30
2-2-5 離散元素法(Discrete Element Method) 32
2-2-6 隱式速度壓力耦合法(Implicit Velocity-Pressure Coupling Method) 34
2-2-7 平流開放邊界(Advective Open BC) 36
第三章 重建台灣九棚海嘯石之古海嘯事件 38
3-1 流固耦合模式驗證 39
3-1-1 模式驗證A 39
3-1-2 模式驗證B 46
3-2 九棚灣TRTM結果 50
3-3 以SPLASH3D建立海嘯湧潮高度與海嘯石推移距離之關係 57
3-4 海嘯石受湧潮衝擊模擬設置之討論 67
3-5 小結 74
第四章 孤立波與水下圓板交互作用之模擬 75
4-1 解析解比較 79
4-2 流場、壓力場及渦度場比較 111
4-3 三維渦流環結構 162
4-4 浸沒深度與幾何形狀對能量消散及波高之影響 177
4-5 小結 179
第五章 結論與建議 181
5-1 結論 181
5-1-1 重建台灣九棚海嘯石之古海嘯事件 181
5-1-2 孤立波與水下圓板交互作用之模擬 182
5-2 建議 184
5-2-1 重建台灣九棚海嘯石之古海嘯事件 184
5-2-2 孤立波與水下圓板交互作用之模擬 184
參考文獻 185
附錄A 孤立波與水下結構交互作用之解析解 191
附錄B 口試書面答覆表 195
[1] Al-Faesly, T., Nistor, Ioan, Palermo, D. and Cornett, A., “Simulated Tsunami Bore Impact On an Onshore Structure”, 20th Canadian Hydrotechnical Conference, 2011.
[2] Bourgeois, J., “Geologic Effects and Records of Tsunamis”, Robinson, A.R. and Bernard, E.N., eds., The Sea, Vol. 15, 2009.
[3] Brossard, J. and Chagdali, M., “Experimental investigation of the harmonic generation by waves over a submerged plate”. Coastal Eng. Vol. 42, pp. 277–290, 2001.
[4] Brossard, J. and Chagdali, M., “Experimental investigation of the harmonic generation by waves over a submerged plate”. Coastal Eng., Vol. 42, pp. 277–290, 2001.
[5] Cabot, W. and Moin, P., “Approximate wall boundary conditions in the large-eLESy simulation of high Reynolds number flow”, Flow Turb. Combust., Vol. 63, pp. 269–291, 2000.
[6] Chen, T.-A., Wang, C.-Y., and Sheng, J., “A Nonlinear Normal Impact Analysis Method of Round Particles”, Chinese Journal of Mechanics, Vol. 18, No. 4, pp. 159–168, 2002.
[7] Cheong, H.F. and Patarapanich, M., “Reflection and transmission of random waves by a horizontal double-plate breakwater”, Ocean Eng., Vol. 18, pp. 63–82, 1992.
[8] Choi, B.-H., Pelinovsky, E., Kim, K.-O. and Lee, J.-S., “Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption”, Natural Hazard and Earth System Sciences,Vol. 3, pp. 321–332, 2003.
[9] Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., Charoentitirat, T., Chutakositkanon, V., Jankaew, K., Kanjanapayont, P., Phantuwongraj, S., “2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand”, Marine Geology, Vol. 248, pp. 179–192, 2008.
[10] Dean, R. G. and Dalrymple, R. A., “Water Wave Mechanics for Engineers and Scientists”, World Scientific, 1991.
[11] Deardorff, J. W., “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number”, Journal of Fluid Mech., Vol. 41, NO. 2, pp. 453–480, 1970.
[12] Goto, K., Chavanich, S.A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawata, D., Yanagisawa, H., “Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand”, Sediment Geology, Vol. 202, pp. 821–837, 2007.
[13] Goto, K., Okada, K. and Imamura, F., “Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan”, Marine Geology, Vol. 262, pp. 14–24, 2009.
[14] Goto, K., Shinnozaki, T., Minoura, K., Okada, K., Sugawara, D. and Imamura, F., “Distribution of boulders at Miyara Bay of Ishigaki Island, Japan: A flow characteristic indicator of tsunami and storm waves”, Island Arc, Vol. 19, pp. 412–426, 2010a.
[15] Goto, K., Miyagi, K., Kawamata, H. and Imamura, F., “Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan”, Marine Geology, Vol. 269, pp. 34–45, 2010b.
[16] Goto, K., Miyagi, K., Kawan, T., Takahashi, J. and Imamura, F., “Emplacement and movement of boulders by known storm waves — Field evidence from the Okinawa Islands, Japan”, Marine Geology, Vol. 283, pp. 66–78, 2011.
[17] Goto, K., Chagué-Goff, C., Goff, J. and Jaffe, B., “The future of tsunami research following the 2011 Tohoku-oki event”, Sedimentary Geology, Vol. 282, pp. 1–13, 2012a.
[18] Goto, K., Sugawata, D., Ikema, S. and Miyagi, T., “Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan”, Sedimentary Geology, Vol. 282, pp. 188–198, 2012b.
[19] Hattori, M., “Wave transmission through a submerged plate”, Coastal Eng., JSCE, pp. 513–517, 1975.
[20] Hattori, M. and Matsumoto, H., “Hydraulic performances of a submerged plate as breakwater”, Coastal Eng., JSCE, pp. 266–270, 1977.
[21] Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawara, D., Yanagisawa, H., “Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand”, Sediment. Geol., Vol. 202, pp. 821–837, 2007.
[22] Imamura, F., Yoshida, I., Moore, A., “Numerical study of the 1771 Meiwa tsunami at Ishigaki Island, Okinawa and the movement of the tsunami stones”, Annual Journal of Coastal Engineering, JSCE, Vol. 48, pp. 346–350, 2008.
[23] Kawana, T. and Nakata, T., “Timing of Late Holocene Tsunamis Originated around the Southern Ryukyu Islands, Japan, Deduced from Coralline Tsunami Deposits”, Journal of Geography (Chigaku Zasshi), Vol. 103, 1994.
[24] Kawana, T., “Some Characteristics of Late Holocene Tsunamis around the Northern Ryukyu Islands, Japan”, Journal of Geography (Chigaku Zasshi), Vol. 105, 1996.
[25] Kojima, H., A. Yoshida, and T. Ijima, “Second order interactions between waves and a submerged horizontal plate,” Coastal Eng. Japan, Vol. 37, No. 2, pp. 152-172, 1994.
[26] Kolmogorov, A. N., “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.”, Dokl. Akad. Nauk SSSR 30, pp. 299-303, 1941.
[27] Koraim, A.S., “Hydrodynamic efficiency of suspended horizontal rows of half pipes used as a new type breakwater”, Ocean Eng.,Vol. 64, pp. 1–22, 2013.
[28] Kumahara, Y., Watanabe, M., Nakata, T. and Koiwa, N., “Aftermath of tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake”, The Quaternary Research, Vol. 50, pp. 149–152, 2011.
[29] Leonard, A., “Energy cascade in large eddy simulation of turbulent fluid flow”. Adv. Feopgys. Vol. 18A, pp. 237-248, 1974.
[30] Li, L., Huang, Z.-H. and Qiu, Q., “Numerical simulation of the erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean Tsunami”, Natural Hazard, 2014.
[31] Lo, H.-Y. and Liu, Philip L.-F., “Solitary Wave Incident On a Submerged Horizontal Plate”, J. Waterway Port Coastal Ocean Eng., Vol. 140, 2014.
[32] Matta, N., Ota, Y., Chen, W.-S., Nishikawa, Y., Ando M. and Chung L.-H., “Finding of Probable Tsunami Boulders on Jiupeng Coast in Southeastern Taiwan”, Terr. Atmos. Ocean. Sci., Vol. 24, pp. 159–163, 2013.
[33] Mei, C.-C., Chan, I-C., and Liu, Philip L.-F. et al., “Long waves through emergent coastal vegetation”, Journal of Fluid Mech.,Vol. 687, pp. 461–491, 2011.
[34] Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., Triyono, R., “Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia”, Earth Planet Space, Vol. 58, pp. 253–258, 2006.
[35] Nandasena, N.A.K., Paris, R. and Tanaka, N., “Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)”, Marine Geology, Vol. 281, pp. 70–84, 2011.
[36] Nandasena, N.A.K., Tanaka, N., Sasaki, Y. and Osada, M., “Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?”, Marine Geology, Vol. 346, pp. 292–309, 2013.
[37] Nott, J., “Extremely high wave deposits inside the Great Barrier Reef, Australia: determining the cause-tsunami or tropical cyclone”, Marine Geology, Vol. 141, pp. 193–207, 1997.
[38] Nott, J., “Waves, coastal boulders and the importance of the pre-transport setting”, Earth and Planetary Science Letters, Vol. 210, pp. 269–276, 2003.
[39] Orer, G. and Ozdamar, A., “An experimental study on the efficiency of the submerged plate wave energy converter”, Reneable Energy, Vol. 32, pp. 1317–1327, 2007.
[40] Parsons, N. F. and Martin, P. A., “Scattering of water waves by submerged plates using hypersingular integral equations”, Appl. Ocean Res, Vol. 14, pp. 313–321, 1992.
[41] Patarapanich, M., “Forces and moment on a horizontal plate due to wave scattering”, Coastal Eng., Vol. 8, pp. 279–301, 1984a.
[42] Patarapanich, M., “Maximum and zero reflection from submerged plate”, J. Waterway Port Coastal Ocean Eng., Vol. 110, pp. 171–181, 1984b.
[43] Patarapanich, M. and Cheong, H.-F., “Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate”. Coastal Eng., Vol. 13, pp. 161–182, 1989.
[44] Poupardin, A., Perret, G., Pinon, G., Bourneton, N., Rivoalen, E. and Brossard, J., “Vortex kinematic around a submerged plate under water waves. Part I: Experimental analysis”. Eur. J. Mech. B-Fluid., Vol. 34, pp. 47–55, 2012.
[45] Rider, W. J. and Kothe, D. B., “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, pp.112–152, 1998.
[46] Russell, J. S., “Report on Waves". Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844. London: John Murray. 311–390, Plates XLVII–LVII, 1845.
[47] Scheffers, A., Kelletat, D., “Sedimentologic and geomorphologic tsunami imprints worldwide—a review”, Earth Science Reviews, Vol. 63, pp. 83–92, 2003.
[48] Seiffert, B., Hayatdavoodi, M. and Ertekin, R. C., “Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat Plate”, Coastal Eng., Vol. 88, pp. 194–209, 2014a.
[49] Seiffert, B., Hayatdavoodi, M. and Ertekin, R.C., “Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Deck with griders”, Coastal Eng., Vol. 88, pp. 210–228, 2014b.
[50] Siew, P. F. and Hurley, D. G., “Long surface wave incident on a submerged horizontal plate”, J. Fluid Mech., Vol. 83, pp. 141–151, 1977.
[51] Smagorinsky, J., “General circulation experiments with the primitive equations: I. The basic equations. Mon.” Weather Rev. 91, 99-164, 1963.
[52] Spiske M., Böröcz, Z. and Bahlburg, H., “The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean”, Earth and Planetary Science Letters, Vol. 268, pp. 384–396, 2008.
[53] Spiske, M. and Bahlburg, H., “A quasi-experimental setting of coarse clast transport by the 2010 Chile tsunami (Bucalemu, Central Chile) ”, Marine Geol., Vol. 289, pp. 72–85, 2011.
[54] Stoker, J.J., “Water Waves Inter Science”, 1957.
[55] Suzuki, A., Yokoyama, Y., Kan, H., Minoshima, K., Matsuzaki, H., Hamanaka, N., Kawahata H., “Identification of 1771 Meiwa Tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders”, Quat. Geochronol., Vol. 3, pp. 226–234, 2008.
[56] Wang, C.-Y., Chuang, C.-C. and Sheng, J., “An Efficient Adaptive Skyline Solver for Contact Dynamics in Discrete Body Systems”, Proceedings of the 3rd International Conference on Analysis of Discontinuous Deformation (ICADD-3), June 3-4, Vail, Colorado, USA, pp. 47–56, 1999.
[57] Wang, C.-Y., Sheng, J. and Chen, T.-A., “A Fast Contact Searching Scheme for 3D Particles”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 14, No. 1, pp.177–184, 2002.
[58] Wang, X.-M., and Liu, P. L.-F., “An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami”, Journal of Hydraulic Engineering and Research, Vol. 44, No. 2, pp. 147-154, 2006
[59] Wang, X.-M. and Liu, Philip L.-F., “An explicit finite difference model for simulating weakly nonlinear and weakly dispersive waves over slowly varying water depth”, Coastal Eng.,Vol. 58, pp. 173–183, 2011.
[60] Wu, T.-R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004.
[61] Yen, Y.-T. and Ma, K.-F., “Source-Scaling Relationship for M 4.6–8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan”, Bull. seism. Soc. Am., Vol. 101, 464–481, 2010.
[62] Yu, X. and Chwang, A. T., “Analysis of wave scattering by submerged circular disk.”, J. Eng. Mech., Vol. 119, pp. 1804–1917, 1993.
[63] Yu, X. and Isobe, M., Watanabe, A., “Wave Breaking Over Submerged Horizontal Plate”, J. Waterway Port Coastal Ocean Eng., Vol. 121, pp. 105–113, 1995.
[64] Yu, X. and Dong, Z., “Direct computation of wave motion around submerged plates”, Proc. 29th Cong. Int. Assoc. Hydr. Res., pp. 277–290, 2001.
[65] Yu, X., “Functional performance of a submerged and essentially horizontal plate for offshore wave control: a review”, Coastal Eng. J., Vol. 44, No. 2, pp. 127–147, 2002.
[66] Zhou, J., Adrian, R. J., Balachandar, S. and Kendally T. M., “Mechanisms for generating coherent packets of hairpin vortices in channel flow”, J. Fluid Mech., Vol. 387, pp. 353–396, 1999.
[67] 朱佳仁,「環境流體力學」,科技圖書股份有限公司,2003。
[68] 吳祚任,「潛在大規模地震與海嘯對核電廠及台灣沿海地區之影響」,國家科學委員會應科方案期末報告,2011。
[69] 李政賢和黃清哲,“波浪與潛沒平板之交互作用”,第27 屆海洋工程研討會論文集,2005。
[70] 李俊延、王豪偉和黃清哲,“波浪與半無限長防波堤之交互作用”,第30屆海洋工程研討會論文集,2008。
[71] 徐虎嘯和吳永照,“孤立波通過沒水平板之波力變化分析”,第26 屆海洋工程研討會論文集,2004。
[72] 莊釗鳴、謝凱旋、盧詩丁、臧振華、鮑曉鷗、陳柏村、朱傚祖、劉彥求、林燕慧、黃志遠、姜彥麟,“基隆和平島考古探坑海嘯沉積物調查”,地球科學聯合學術研討會,2013。
[73] 葉錦勳、吳祚任、廖建明、林瑞國,「海嘯預警及災損資料庫建置計畫(2/3)」,國家科學委員會應科方案期末報告,2013。
[74] Caribbean Disaster Emergency Management Agency, Tsunami Glossary, http://weready.org/tsunami/index.php?option=com_glossary
[75] National Oceanic and Atmospheric Administration, Tsunami,
[76] 中央氣象局地震測報中心,台灣歷史海嘯。
[77] 顏子矞,天秤颱風過後於蘭嶼椰油國小操場上之風暴石。
(電子全文 已開放)
第一頁 上一頁 下一頁 最後一頁 top
* *