帳號:guest(54.225.38.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:黃培軒
作者(外文):Pei-Hsuan Huang
論文名稱:裙礁流場之數值分析與消能特性之探討
論文名稱(外文):Numerical Simulation on the Flow Field and Energy Dissipation by the Fringing Reef
指導教授:吳祚任
指導教授(外文):Tso-Ren Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:100626003
出版年:103
畢業學年度:102
語文別:中文
論文頁數:119
中文關鍵詞:裙礁大渦模擬能量消散流體體積法珊瑚礁脊三維模擬
外文關鍵詞:fringing reefLESenergy dissipation rateVOFridge3-D simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
裙礁為一種典型之珊瑚礁型式,主要由珊瑚礁灘(reef flat)和珊瑚礁坡(reef slope)所組合而成。其中珊瑚礁灘通常存在於較淺之海岸邊並且毗鄰陸地,其坡度較礁坡為平緩,可對波浪有消能效果。珊瑚礁坡離海岸較遠,坡度亦較為陡峭,因波浪由深水段傳遞到較淺之珊瑚礁灘上時經常直接造成波浪反射和伴隨碎波之產生。為了深入了解能量消散機制,本研究透過理想化珊瑚礁之實驗與數值模擬來探討其流場特性。在數值模擬方面,採用Large-Eddy Simulation (LES) 紊流模型並搭配Volume of Fluid (VOF) 法,為精準描述實驗室造波機所產生之入射波,本研究使用moving-solid algorithm (MSA)模擬造波機推板之運動,並針對無ridge之案例進行三維數值分析。
其結果顯示,數值模擬與實驗比對良好,自由液面和半水深之流速比對中,流速誤差均於5%以內。在沒有ridge之不同前斜坡坡度之案例中顯示,1:10之前斜坡能量消散率較1:1前斜坡之能量消散率大12%。在沒有ridge不同之靜水深給予相同之波浪條件下,靜水深之改變對能量消散率並無太大之影響,靜水深0.4公尺之能量消散率僅較靜水深0.5公尺之能量消散率大1.2%。在固定相同之靜水深條件下,本模擬給予不同週期之波浪條件,其能量消散率隨將週期增長。無ridge之三維模擬結果呈現波浪破碎後之三維現象,且相較於二維模擬,波速及波高之比對上皆小約5%,而能量消散率部分則小約1%。詳細之分析結果與方法將於論文全文中呈現。
The fringing reef is a common type of coral reef which is mainly by the reef flat and reef slope. The reef flat is usually found in the shallow water area with a mild slope. Because the reef flat is adjacent to land, it plays an important role on dissipating the wave energy. Reef slope, on the other hand, is often quite steep which reflects the wave energy directly and introducing wave breaking. In order to have profound understanding on the energy dissipating mechanism, we idealize the reef setup and explore the flow field numerically. We performed the numerical simulation by solving the Large-Eddy Simulation (LES) model with volume of fluid (VOF) interface tracking algorithm. To accurately describe the incident wave generated by a piston-type wavemaker, we utilized the moving-solid algorithm (MSA). Furthermore, the case without a ridge was chosen for demonstrating the 3-D effect of the flow field. By comparing the numerical result and the experimental data, the differences of flow velocity at middle depth and free surface-elevation were less than 5%. Energy dissipation rate for 1:10 slope is 12% greater than on the 1:1 slope. Dissipation rate of the still water depth 0.4m is 1.2% greater than the one of the still water depth 0.5m. Also, Long wave period has lager energy dissipation rate. In the case of 3-D simulation, the results show that the 3-D effect was observed after wave breaking. The differences between the 2-D and 3-D are less than 5% in terms of both the wave height and velocities. Energy dissipation rate between 2-D and 3-D simulations is less than 1%. Detailed analysis are shows in the context.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言及研究動機 1
1-2 研究方法 4
1-3 本文架構 5
第二章 文獻回顧 7
2-1 裙礁消能之文獻回顧 7
2-2 數值方法研究裙礁之文獻回顧 8
2-3 海岸消能之文獻回顧 10
2-4 自由液面描述法之文獻回顧 10
第三章 模式簡介與數值方法 14
3-1 模式簡介 14
3-1-1 統御方程式(Governing Equations) 14
3-2 大渦模擬模式(Large Eddy Simulation, LES) 15
3-3 流體體積法(Volume of fluid method, VOF) 17
3-4 有限體積法(Finite Volume Method, FVM) 19
3-5 部份網格法(Partial-cell Treatment, PCT) 20
3-6 海綿層消波(Sponge Layer) 21
3-7 投影法(Projection Method) 22
3-8 移動固體法(Moving Solid Algorithm, MSA) 23
第四章 裙礁實驗尺度模擬 28
4-1 數值模式驗證 28
4-1-1 下游海綿層消能區消能檢定 28
4-1-2 邊牆效應分析 29
4-1-3 移動固體法數值造波結果驗證 29
4-2 裙礁模擬問題描述 29
4-3 實驗設置與數值模式設定 30
4-3-1 實驗室設置 30
4-3-2 數值模式設置 31
4-4 結果驗證 32
4-4-1 不含ridge之驗證與流場分析 32
4-4-2 含ridge之驗證與流場分析 33
4-4-3 有無ridge之流場探討 35
4-5 裙礁參數影響分析 38
4-5-1 前斜坡坡度分析 38
4-5-2 靜水深之分析 38
4-5-3 週期之分析 39
4-5-4 ridge長度之分析 39
4-6 三維效應之模擬與分析 40
第五章 結論與建議 95
5-1 結論 95
5-2 建議 97
參考文獻 98
[1] Alejandro, S., Jane M.S., Zeki D., and Stan B., “Combined wind and waves over a fringing reef.” Report 1: Dara Report, ERDC/CHL-TR-07-4, Vickburg, MS: U.S. Army Engineer Research and Development Center, 2007.
[2] Chen, Y., Lin, B.-L., Jiang, C.-B., and Liu Y., “Predicting near-field dam-break flow and impact force using a 3D model.” Journl of Hydraulic Research Vol. 48, No. 6, pp. 784-792, 2010.
[3] Cabot, W., and Moin, P., “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow.” Flow Turb. Combust. 63, 269-291, 2000.
[4] Skotner, C Apelt, C.J., “Application of a Boussinesq model for the computation of breaking waves. Part 2: Wave-induced setdown and set-up on a submerged coral reef.” Ocean Engineering 26, pp. 927-947, 1999.
[5] Chuang, M.-H., “Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis.” Master dissertation, National Central University, 2009.
[6] Deardorff, J.W., “Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer.” Boundary-Layer Meterol. 7, 81-106, 1974.
[7] Dalrymple, R.A., Knio, O., Cox, D.T., Gesteira, M., and Zou, S., “Using a Lagrangian particle method for deck overtopping. ” Proc.,
Waves 2001, ASCE, Reston, Va., 1082–1091. 2002.
[8] Ehsan, R., Amir, P.Z., and Mahmood P.-F., “Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. ” Applied Mathematical Modeling 376469-6488, 2013.
[9] Goda, Y., “Resolution of incident and reflected wave of irregular profiles. In: Random Seas and Design of Maritime Structures. ” World Scientific Press, Singapore, pp. 356-361, 2000.
[10] Gourlay, M.R., “Wave transformation on a coral reef. ” Coastal Eng. 27, pp. 161-193, 1994.
[11] Gourlay, M.R., “Wave set-up on coral reefs. 1.Set-up and wave-generated flow on an idealized two-dimensional reefs. ” Coastal Eng. 27, 161-193, 1996a.
[12] Gourlay, M.R., “Wave set-up on coral reefs. 2.Wave set-up on reefs with various profiles. ’’ Coastal Eng. 28, pp.17-55, 1996b.
[13] Gourlay, M.R., Colleter, G., ‘‘Wave-generated flow on coral reefs: an analysis for two-dimensional horizontal reef-flats with steep faces. ” Coastal Eng. 52, 353-387, 2005.
[14] Hirt, C.W., Nichols, B.D. and Romero, N.C., “SOLA-a numerical solution algorithm for transient fluid flows,” Los Alamos Scientific Laboratory, LA-582, pp. 1-50, 1975.
[15] Hirt, C.W. and Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comp. Phys., 39, 201-225, 1981.
[16] Hsaio, S.-C., Lynett, P., Hwung, H.-H., and Liu, P.L.-F., “Numerical simulations of nonlinear short waves using the multi-layer model.” Eng. Mech. 131(3)pp.231-243, 2005.
[17] Hsaio, S.-C., and Lin, T.-C., “Tsunami-like solitary wave impinging and overtopping an impermeable seawell: Experiment and RANS modeling.” Costal Engineering 27, pp. 1-18, 2010.
[18] Huang, C.-J. and Dong, C.-M., “Wave deformation and vortex generation in water waves propagating over a submerged dike.” Coast. Engng. 37, pp. 123-148, 1999.
[19] Huang, Z.-C., Luc L., W. Kendall, Jason H.M., Benjamin R., Nicholas S., Ryan M.M., “Dissipation of wave energy and turbulence in a shallow coral reef lagoon.” J. Geophys. Res., 117,pp.15-33, 2012
[20] Kothe, D.B., Williams, M.W., Lam, K.-L., Korzewa, D.R., Tubesing, P.K., and Puckett, E.G., “A second-order accurate, linearity-preserving volume tracking algorithm, for free surfaceflows on 3-D unstructured meshes.” Proc. 3rd ASME/JSME Joint Fluids Engng Conf. pp. 18–22 July. FEDSM99-7109, 1999.
[21] Losada, I. J., Silva, R., and Losada, M. A., “3-D non-breaking regular wave interaction with submerged breakwaters.” Coast. Engng., 28, pp. 229-248, 1996.
[22] Lin, P. and Liu, P. L.-F., “A numerical study of breaking waves in the surf zone.” J. Fluid Mech., 359, pp. 239-264, 1998a.
[23] Lin, P., and Li, C.-W., “Wave-current interaction with a vertical square cylinder.” Ocean Engineering, 30, pp. 855-876, 2003.
[24] Lohner, R., Yang, C., and Onate, E., “On the simulation of flows with violent free surface motion.”, Comput. Methods Appl, Mech, Engrg, 195, pp. 5597-5620, 2006.
[25] Lin, W.-S. and Chan, E.-S., “Numerical simulation of nonlinear dispersive waves propagating over a submerged bar by IB-VOF model.” Ocean Engineering, 38, pp. 319-328,2011.
[26] Moradi, M. and Larmaei, M., “Simulation of shallow water waves using VOF method.” Journal of Hydro-environment Research 3, pp. 208-216, 2010.
[27] Marchandise, E., and Remacle, J.F., “A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows.” J Comput Phys, 219 (2), pp. 780–800, 2006.
[28] Nichols, B.D., Hirt, C.W., and Hotchkiss, R.S., “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries” Report LA-8355, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, 1980.
[29] Nouri, Y., Nistor, I., Palermo, D., and Cornett, A., “Experimental investigation of the tsunami impact on free standing structures.” Coastal Engineering Journal, JSCE, 52 (1), 43–70, 2010.
[30] Nistor, I., Palermo, D., Cornett, A., and Al-Faesly, T., “Experiment and numerical modeling of tsunami loading on structures.”, 2011.
[31] Osher, S. and Sethian, J.A., “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations.” J. Comput. Phys. 79, pp. 12-49, 1988.
[32] Stoker, J.J., “The formation of breaker and bores, the theory of nonlinear wave propagation in shallow water and open channels, Communications on AppliedMathematics 1(1)pp. 1–87, 1948.
[33] Stoker, J.J., “Water Waves; The Mathematical Theory with Applications.” Interscience Publishers, New York, 1957.
[34] Smagorinsky, J., “General circulation experiments with the primitive equations: I. The basic equations. Mon.” Weather Rev. 91, pp. 99-164, 1963.
[35] Ting, F.C.K. and Kim, Y.-K., “Vortex generation in water waves propagation over a submerged obstacle.” Coast. Engng. 24, pp. 23-49, 1994.
[36] Tang, C.-J. and Chang, J.-H., “Flow separation during solitary wave passing over submerged obstacle.” J. Hydr. Engng. 124, pp.742-749, 1998.
[37] Volker R., Cheung, K.-F., and Marcelo H.K.., “Shock-capturing Boussinesq\-type model for nearshore wave processes.” Coastal Engineering 57, pp. 407-423. 2010
[38] Wu, T.-R., “A numerical study of three-dimensional breaking waves and turbulence effects,” PhD dissertation, Cornell University, 2004.
[39] Wu, T.-R. and Liu, P.L.-F., “Numerical study on the three-dimensional dam-break bore interacting with a square cylinder”, in Nonlinear Wave Dynamics, World Scientific Publishing, 2009a.
[40] William N.S., “Laboratory study of reef-lagoon system hydraulics.” J. Waterway, Port, Coastal, Ocean Eng. pp. 380-391, 1983
[41] Yao, Y, Huang, Z.-H Monismith G. S, and Lo Y.M. E., “1DH Boussinesq modeling of wave transformation over fringing reefs.” Ocean Engineering, 47, pp. 30-42,2003.
[42] 朱佳仁, ”Engineering fluid mechanics” 台北市: 科技圖書,2005
[43] 黃正欣,黃正利, “波浪斜向入射堤面反射率之研究”,第十七屆海洋工程研討會, pp. 765-781, 1995.
[44] 董志明,黃清哲, “波浪通過矩形潛堤所生渦動現象之數值模擬”,第二十屆海洋工程研討會, pp. 181-188, 1998.
[45] 柯鈞瀚,蔡清標,陳盈圻 “潛堤與海堤間波流場數值模擬”,第34屆海洋工程研討會, pp. 213-218, 2012.
[46] 王豪偉,黃清哲, “孤立波通過三維潛堤所衍生之波場與流場”,海洋工程期刊,第6卷,第2期, pp. 1-22, 2006.
[47] 許泰文,黃榮鑑,陳明志,陳瑜瑩 “孤立波通過前提之互制研究”,第十五屆全國流體力學學術研討會。B054,2002.
[48] 黃志誠,“珊瑚礁水動力學驗就發展的近況”,自然科學簡訊第二十四卷第一期。2012.
[49] 蘇仕峰,梁茂昌,“參數化碎波模式模擬颱風波浪通過珊瑚礁 海岸之研究”,第33屆海洋工程研討會, pp. 109-114, 2011.
[50] 許泰文,“近岸水動力學”,科技圖書股份有限公司,2003.
[51] 陳孟志,”以三維賓漢留數值模式模擬海嘯沖刷坑之發展”,碩士論文,國立中央大學水文與海洋科學研究所,2011.
[52] 魏妙珊, “三維海嘯湧潮對近岸結構物之影響”,碩士論文,國立中央大學水文與海洋科學研究所, 2009.
[53] 莊美惠,”雙向流固耦合移動邊界法發展及其於山崩海嘯之研究”,碩士論文,國立中央大學水文與海洋科學研究所,2009.
[54] 吳聲瑋,”墾丁附近海域珊瑚礁分布現況之調查與研究”,碩士論文,國立中山大學海洋環境及工程研究所,2005.
[55] 墾丁國家公園管理處,http://www.ktnp.gov.tw/cht/culture.aspx
[56] 戴昌鳳,“台灣南部海域珊瑚群聚的變遷及長期監測統之建立”,行政院國家科學委員會專題研究計畫成果報告, p.6, 1997.
論文全文檔清單如下︰
1.電子全文連結(6397.363K)
(電子全文 已開放)
紙本授權註記:2016/9/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *