|
1. Lindqvist Y., and Schinelder, G.: Circular permutations of natural protein sequences: structural evidence. Curr Opin Struct Biol 1997, 7:422-427. 2. Schena M, Shalon, D., Davis, R.W., Brown, P.O.: Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 1995, 270(5235):467-470. 3. Han, J.-D. et al.: Effect of sampling on topology predictions of protein–protein interaction networks. Nat Biotechnol 2005, 23:839-844. 4. Xu, X. et al.: The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expression and Purification 2010, 72(2):149-156. 5. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 2005, 102(6):1974-1979. 6. Singh, R., Xu, J., and Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci USA 2008, 105(35):12763-12768. 7. Kelley, B.P. et al.: Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res 2004, 32:83-88. 8. Kalaev, M., Smoot, M., Ideker, T., and Sharan, R.: NetworkBLAST: comparative analysis of protein networks. Bioinformatics 2008, 24(4):594-596. 9. Koyutürk M. et al.: Pairwise alignment of protein interaction networks. J Comput Biol 2006, 13:182-199. 10. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., and Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res 2006, 16(9):1169-1181. 11. Flannick, J., Novak, A., Do, C.B., Srinivasan, B.S., and Batzoglou, S.: Automatic parameter learning for multiple local network alignment. J Comput Biol 2009, 16(8):1001-1022. 12. Liao, C.-S., Lu, K., Baym, M., Singh, R., and Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 2009, 25(12):i253-258. 13. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Pržulj, N.: Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 2010, 7(50):1341-1354. 14. Sahraeian, S.M.E., and Yoon, B.-J.: SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks. PLoS ONE 2013, 8(7):e67995. 15. Alkan, F. and Erten, C.: BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks. Bioinformatics 2014, 30(4):531-539. 16. Jeong, H. and Yoon, B.-J.: Accurate multiple network alignment through context-sensitive random walk. BMC Systems Biology 2015, 9(Suppl. 1):S7. 17. van Dongen, S.: Graph clustering by flow simulation. PhD Thesis. Utrecht, The Netherlands: University of Utrecht; 2000. 18. Bader, G.D. and Hogue, C.WV.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2. 19. King, A.D., Pržulj, N., and Jurisica, I.: Protien complex prediction via cost-based clustering. Bioinformatics 2004, 20(17):3013-3020. 20. Altaf-UI-Amin M. et al.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 2006, 7:207. 21. Adamcsek, B. et al.: Cfinder:locating cliques and overlapping modules in biological networks. Bioinformatics 2006, 22:1021-1023. 22. Chua, H.N. et al.: Using indirect protein-protein interactions for protein complex prediction. J Bioinform Comput Biol 2008, 6:435-466. 23. Liu, G., Wong, L., and Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 2009, 25(15):1891–1897. 24. Wu, M., Li, X., Kwoh, C.K., and Ng, S.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics 2009, 10:169. 25. Nepusz, T., Yu, H., and Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 2012, 9:471-472. 26. Peng, W., Wang, J., Zhou, B., and Wang, L.: Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2014, 12(1):179-192. 27. Barabási, A.L. and Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat Rev 2004, 5:101-113. 28. Guo, X. and Hartemink, A.J.: Domain-oriented edge-based alignment of protein interaction networks. In: Proceedings of the International Conference on Intelligent Systems in Molecular Biology 2009; Stockholm, Sweden. 240-246. 29. Kelley, B.P. et al.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 2003, 100:11394-11399. 30. Zaslavskiy, M. et al.: Global alignment of protein–protein interaction networks by graph matching methods. In: Proceedings of the International Conference on Intelligent Systems in Molecular Biology; Stockholm, Sweden. 2009: 259-267. 31. Formont-Racine, M. et al.: Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 1997, 16(277-282). 32. Ito, T. et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574. 33. Uetz, P. et al.: A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627. 34. Aebersold, R. and Mann, M.: Mass spectrometry-based proteomics. Nature 2003, 422:198-207. 35. Bader, G.D. and Hogue, W.V.: Analyzing yeast protein–protein interaction data obtained from different sources. Nat Biotechnol 2002, 20:991-997. 36. Ho, Y. et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415:180-183. 37. Gavin, A.C. et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147. 38. Tan, K., Ideker, T.: Protein Interaction Networks. In: Biological Networks, Complex Systems and Interdisciplinary Science. Edited by Képès F, vol. 3. Singapore: World Scientific Publishing Co. Pte. Ltd; 2007. 39. Aladag˘, A.E. and Erten, C.: SPINAL: scalable protein interaction network alignment. Bioinformatics 2013, 29:917-924. 40. Berg, J. and Lässig, M.: Cross-species analysis of biological networks by Bayesian alignment. Proc Natl Acad Sci USA 2006, 103:10967-10972. 41. Dutkowski, J. and Tiuryn, J.: Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics 2007, 23:149-158. 42. Patro, R. and Kingsford, C.: Global network alignment using multiscale spectral signatures. Bioinformatics 2012, 28:3105-3114. 43. Srinivasan, B.S. et al.: Integrated protein interaction networks for 11 microbes. In: Research in Computational Molecular Biology. Edited by Alberto Aea, vol. 3909. Berlin/Heidelberg: Springer; 2006: 1-14. 44. Chindelevitch, L. et al.: Local optimization for global alignment of protein interaction networks. Proc Pac Symp Biocomput 2010(15):123-132. 45. Hubbard, T.J. et al.: Ensembl 2009. Nucleic Acids Res 2009, 37:D690-D697. 46. Sahni, S. and Gonzales, T.: P-complete approximation problems. J ACM 1976, 23:555-565. 47. Croes, G.A.: A method for solving traveling salesman problems. Oper Res 1958, 6:791-812. 48. Lawler, E.L. et al.: The Traveling Salesman Problem. Chichester: John Wiley & Sons; 1985. 49. Johnson, D.S. and McGeoch, L.A.: The traveling salsman problem: a case study in local optimization. In: Local Search in Combinatorial Optimization. Edited by Aarts EHLaL, J.K. London: John Wiley & Sons; 1997: 215-310. 50. Papadimitriou, C.H. and Steiglitz, K.: On the complexity of local search for the traveling salesman problem. SIAM J Computing 1977, 6:76-83. 51. Lueker, G. manuscript, Princeton University, 1976. 52. Chandra, B., Karloff, H. and Tovey, C.: New results on the old k-opt algorithm for the TSP. In: In Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithm: 1994. 150-159. 53. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K. and Pandit, V. : Local search heuristics for k-median and facility location problems. SIAM J Computing 2004, 33(3):554-562. 54. Pardalos, P.M., Rendl, F., and Wolkowicz, H.: The Quadratic Assignment Problem: A Survey and Recent Developments. In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems 1994, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science:1-42. 55. Viger, F. and Latapy, M.: Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In Proceedings of the International Computing and Combinatorics Conference 2005:440-449. 56. Taylor, R.: Constrained switchings in graphs. Combinatorial Mathematics 1980, 8:314-336. 57. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Res Log Quart 1995, 2:83-97. 58. Kao, M.Y., Lam, T.W., Sung, W.K., and Ting, H.F.: A decomposition theorem for maximum weight bipartite matchings. SIAM J Computing 2001, 31:18-26. 59. Komili, S. et al.: Functional specificity among ribosomal proteins regulates gene expression. Cell 2007, 131:557-571. 60. Memišević, V. et al.: Complementarity of network and sequence information in homologous proteins. J Integr Bioinformatics 2010, 7:135. 61. Kuchaiev, O. and Pržulj, N.: Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 2010, 27:1390-1396. 62. Breitkreutz, B.J. et al.: The BioGRID Interaction Database. Nucleic Acids Res 2008, 36:D637-D640. 63. Salwinski, L. et al.: The database of interacting proteins: 2004 update. Nucleic Acids Res 2004, 32:D449-D451. 64. Keshava Prasad, T.S. et al.: Human protein reference database 2009 update. Nucleic Acids Res 2009, 37:D767-D772. 65. Park, D. et al.: IsoBase: a database of functionally related proteins across PPI networks. Nucleic Acids Res 2011, 39:D295-D300. 66. Hagberg, A.A. et al.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference: 2008; Pasadena, California. 11-15. 67. Galil, Z.: Efficient algorithms for finding maximum matchings in graphs. ACM Comput Surv 1986, 18:23-38. 68. Pržulj, N. et al.: Modeling interactome: scale-free or geometric? Bioinformatics 2004, 20:3508-3515. 69. Csardi, G. and Nepusz, T.: The igraph software package for complex network research. Int J Complex Syst 2006, 36:1695. 70. Zhang, Y., Li, S., Skogerbo, G., Zhang, Z., Zhu, X., Sun, S., Lu, H., Shi, B., and Chen, R.: Phylophenetic properties of metabolic pathway topologies as revealed by global analysis. BMC Bioinformatics 2006, 7:252. 71. Mano, A., Tuller, T., Beja, O., and Pinter, R.Y.: Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics 2010, 11(Suppl 1):S38. 72. Ma, C.-Y. et al.: Reconstruction of phyletic trees by global alignment of multiple metabolic networks. BMC Bioinformatics 2013, 14(Suppl. 2):S12. 73. Rigaut, G. et al.: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 1999, 17:1030-1032. 74. Berger, B., Peng, J., and Singh, M.: Computational solutions for omics data. Nat Rev Genet 2013, 14(5):333-346. 75. Tarassov, K. et al.: An in vivo map of the yeast protein interactome. Science 2008, 320(5882):1465-1470. 76. Li, X.L., Wu, M., Kwoh, C.K., and Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics 2010, 11(Suppl. 1):S3. 77. Blasche, S. and Koegl, M.: Analysis of protein-protein interactions using LUMIER assays. Methods Mol Biol 2013, 1064:17-27. 78. Taipale, M. et al.: A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 2014, 158:434-448. 79. Sahni, N. et al.: Widespread macromolecular interaction perturbations in human genetic disorders. Cell 2015, 161:647-660. 80. Snider, J. et al.: Fundamentals of protein interaction network mapping. Mol Syst Biol 2015, 11(12):848. 81. Maraziotis, I.A., Dimitrakopoulou, K., and Bezerianos, A.: Growing functional modules form a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 2007, 8:408. 82. Ulitsky, I. and Shamir, R.: Identification of functional modules using network topology and high-throughput data. BMC Systems Biology 2007, 1:8. 83. Jung, S.H. et al.: Protein complex prediction based on simultaneous protein interaciton network. Bioinformatics 2010, 26(3):385-391. 84. Singh Rea: Struct2Net: a web service to predict proteinVprotein interactions using a structure-based approach. Nucleic Acids Res 2010, 38:W508-W515. 85. Zhang, S.H., Ning, X.M., Liu, H.W., and Zhang, X.S.: Prediction of protein complexes based on protein interaction data and functional annotation data using kernel methods. LNBI 2006, 4115:514-524. 86. Cho, Y.R., Hwang, W., Ramanathan, M., and Zhang, A.: Semantic integration to identify overlapping functional modules in protein interaciton networks. BMC Bioinformatics 2007, 8:265. 87. Li, X.L., Foo, C.S., and Ng, S.K.: Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. CSB 2007:157-168. 88. Cho, H., Bonnie, B., and Peng, J.: Diffusion component analysis: unraveling functional topology in biological networks. Proc of the 19th Research in Computational Molecular Biology (RECOMB), LNCS 2015, 9029:62-64. 89. Qi, Y. et al.: Protein complex identification by supervised graph local clustering. Bioinformatics 2008, 24:i250-i268. 90. Hirsh, E. and Sharan, R.: Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 2006, 23(2):e170-e176. 91. Sharan, R. et al.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. RECOMB 2004:282-289. 92. Dost, B. et al.: QNet: A tool for querying protein interaction networks. RECOMB 2007:1-15. 93. Davis, D. et al.: Topology-function conservation in protein-protein interaction networks. Bioinformatics 2015, 31(10):1632-1639. 94. Zhao, N., Han, J.G., Shyu, C.R., and Korkin, D.: Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS Comput Biol 2014, 10(5):e1003592. 95. Berg, J., Lässig, M., and Wagner, A.: Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 2004, 4:51. 96. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 2001, 18:1283-1292. 97. Arabidopsis Interactome Mapping Consortium: Evidence for Network Evolution in an Arabidopsis Interactome Map. Science 2011, 333:601-607. 98. Soffer, S.N. and Vázquez, A.: Network clustering coefficient without degree-correlation biases. Physical Review E 2005, 71:057101. 99. Wang, J., Li, M.,Wang, H., and Pan, Y.: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4):1070-1080. 100. Li, M. et al.: Modifying the DPClus algorithm for identifying protein complexes based on new topology structures. BMC Bioinformatics 2008, 9:398. 101. Tomita, E., Tanaka, A., and Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor Comput Sci 2006, 363:28-42. 102. Liu, G., Li, J., and Wong, L.: Assessing and predicting protein interactions using both local and global network topological metrics. In: Proceedings of the 19th International Conference on Genome Informatics; Gold Coast, Australia. 2008: 138-149. 103. Brohee, S. and van Helden, J.: Evaluation of clustering algorithms for proteinprotein interaction networks. BMC Bioinformatics 2006, 7:488. 104. Chatr-aryamontri, A. et al.: The BioGRID interaction database: 2013 update. Nucleic Acids Res 2013, 41:D816-D823. 105. Vinayagam, A. et al.: Protein complex-based analysis framework for highthroughput data sets. Sci Signal 2013, 6:rs5. 106. Ruepp, A. et al.: CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 2008, 36:D646-D650. 107. Ashburner, M. et al.: Gene Ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25-29. 108. Luc, P.V. and Tempst, P.: PINdb: A database of nuclear protein complexes from human and yeast. Bioinformatics 2004, 20:1413-1415. 109. Kanehisa, M. et al.: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40:D109-D114. 110. Pu, S. et al.: Up-to-date catalogue of yeast protein complexes. Nucleic Acids Res 2009, 37(3):825-831. 111. Guruharsha, K.G. et al.: A Protein Complex Network of Drosophila melanogaster. Cell 2011, 147(3):690-703. 112. Mewes, H.W. et al.: MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 2004, 32:D41-D44. 113. Krogan, N.J. et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440:637-643. 114. Gavin, A. et al.: Proteome survey reveals modularity of the yeast cell machinery. Cell 2006, 440:631-636. 115. Collins, S.R. et al.: Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007, 6:439-450. 116. Delsuc, F., Brinkmann, H., and Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005, 6(5):361-375. 117. Woese, C.R., Kandler, O., and Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990, 87(12):4576-4579. 118. Fukushima, M., Kakinuma, K., and Kawaguchi, R.: Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 2002, 40(8):2779-2785. 119. Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., and Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science 2006, 311(5765):1283-1287. 120. Creevey, C.J., Doerks, T., Fitzpatrick, D.A., Raes, J., and Bork, P.: Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 2011, 6(8):e22099. 121. Forst, C.V. and Schulten, K.: Phylogenetic analysis of metabolic pathways. J Mol Evol 2001, 52(6):471-489. 122. Heymans, M. and Singh, A.K.: Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 2003, 19(Suppl 1):i138-146. 123. Aguilar, D., Aviles, F.X., Querol, E., and Sternberg, M.J.: Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J Mol Biol 2004, 340(3):491-512. 124. Clemente, J.C., Satou, K., and Valiente, G.: Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome Inform 2005, 16(2):45-55. 125. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., and Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 2005, 21(16):3401-3408. 126. Oh, S.J., Joung, J.G., Chang, J.H., and Zhang, B.T.: Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks. BMC Bioinformatics 2006, 7:284. 127. Clemente, J.C., Satou, K., and Valiente, G.: Phylogenetic reconstruction from nongenomic data. Bioinformatics 2007, 23(2):e110-115. 128. Mazurie, A., Bonchev, D., Schwikowski, B., and Buck, G.A.: Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 2008, 24(22):2579-2585. 129. Borenstein, E., Kupiec, M., Feldman, M.W., and Ruppin, E.: Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci USA 2008, 105(38):14482-14487. 130. Chang, C.W., Lyu, P.C., and Arita, M.: Reconstructing phylogeny from metabolic substrate-product relationships. BMC Bioinformatics 2011, 12(Suppl 1):S27. 131. Kanehisa, M. and Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30. 132. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Federhen, S. et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012, 40(Database):D31-25. 133. Stiles, M.E. and Holzapfel, W.H.: Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 1997, 36(1):1-29. 134. Ljungh, A. and Wadstrom, T.: Lactobacillus molecular biology: from genomics to probiotics: Caister Academic Press; 2009. 135. Lee, C.C., Lo, W.C., Lai, S.M., Chen, Y.P., Tang, C.Y., Lyu, P.C.: Metabolic classification of microbial genomes using functional probes. BMC Genomics 2012, 13:157. 136. Canchaya, C., Claesson, M.J., Fitzgerald, G.F., van Sinderen, D., and O’Toole, P.W.: Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 2006, 152(Pt 11):3185-3196. 137. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N. et al.: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 2006, 103(42):15611-11561. 138. Zhang, Z.G., Ye, Z.Q., Yu, L., and Shi, P.: Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 2011, 11:1. 139. Rocap, G., Distel, D.L., Waterbury, J.B., and Chisholm, S.W.: Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiology 2002, 68(3):1180-1191. 140. Martiny, A.C., Kathuria, S., Berube, P.M.: Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci USA 2009, 106(26):10787-10792. 141. Blankenship, R.E.: Molecular mechanisms of photosynthesis: Blackwell Science; 2002. 142. Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5:164-166. 143. Huson, D.H., Richter, D.C., Rausch, C., Dezulian, T., Franz, M., and Rupp, R.: Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 2007, 8:460. 144. Ay, F., Kellis, M., and Kahveci, T.: SubMAP: aligning metabolic pathways with subnetwork mappings. J Comput Biol 2011, 18(3):219-235. 145. Chindelevitch, L., Stanley, S., Hung, D., Regev, A., and Berger, B.: MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis. Genome Biol 2012, 13(1):r6. 146. Suthram, S., Sittler, T., and Ideker, T.: The Plasmodium protein network diverges from those of other eukaryotes. Nature 2005, 438(7064):108-112. 147. Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., and Stumpf, M.P.: Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks. BMC Evol Biol 2005, 5:23. 148. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J.: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
|