|
1. Quirk˙Serda著,羅文雄、蔡榮輝、鄭柚盈譯,2003,「半導體製造技術」,滄海書局。 2. Tobin, K. W., Gleason, S. S., Lakhani, F., & Bennett, M. H. (1997). Automated analysis for rapid defect sourcing and yield learning. Future Fab International, 1(4), pp. 313. London: Technology Publishing Ltd. 3. Chien, C., Lee, P., Peng, C., 2003. Semiconductor manufacturing data mining for clustering and feature extraction. Journal of Information Management 10 (1), 63–84. 4. Chien, C., Wang, W., Cheng, J., 2007. Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications 33 (1), 1–7. 5. 簡禎富、林鼎浩與劉巧雯,「建構晶圓圖分類之資料挖礦方法及其實證研究」,Journal of the Chinese Institute of Industrial Engineers, Vol. 19, No. 2, pp. 23-38 (2002). 6. Stapper, C. H. (1985). The effects of wafer to wafer defect density variations on integrated circuit defect and fault distributions. IBM Journal of Research Development, 29(1), pp. 87–97. 7. Hsu S.-C., Chien C.-F., (2007). Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing. International Journal of Production Economics, 107, pp. 88-103. 8. Li T.-S., Huang C.-L., (2009). Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing. Expert Systems with Applications, 36, pp. 374-385. 9. Chao, L.-C, Tong L.-I., (2009). Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index. Expert Systems with Applications 36, pp. 10158–10167. 10. Friedman, D. J., Hansen, M. H., Nair, V. N., & James, D. A. (1997). Model-free estimation of defect clustering in integrated circuit fabrication. IEEE Transactions on Semiconductor Manufacturing, 10(3), 344–359. 11. Nieddu, L., & Patrizi, G. (2000). Formal methods in pattern recognition. European Journal of Operation Research, 120(3), pp. 459–495. 12. Bhanu, B., Lee, S., & Ming, J. (1995). Adaptive image segmentation using a genetic algorithm. IEEE Transactions on Systems Man Cybernetics, 25(12), pp. 1543–1567. 13. Chen, C. L., & Chang, M. H. (1998). Optimal design of fuzzy sliding-mode control: A comparative study. Fuzzy Sets and Systems, 93(1), pp. 37–48. 14. Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), pp. 4–37. 15. Fiesler, E. (1994). Comparative bibliography of ontogenic neural networks. In Proceedings of the international conference on artificial neural networks. Sorrento, Italy, pp. 793–796. 16. Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), pp. 273–297. 17. Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2), pp. 415–425 18. Joachims, J. (1998). Text categorization with support vector machines: Learning with many relevant features. In Proceedings of ECML-98, 10th European conference on machine learning, pp. 137–142. 19. V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995. 20. Perdisci, R., Gu, G., Lee, W., (2006). Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems. 6th IEEE International Conference on Data Mining Location: Hong Kong, pp. 488-498. 21. Manevitz, L.M., Yousef, M., (2001). One-class SVMs for document classification. Journal of Machine Learning Research 2, pp. 139-154. 22. Georges, M. and Jean, S., History of Mathematical Morphology, 1968. 23. Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm . 24. J. Principe, N. Euliano, and W. Lefebvre, Neural and Adaptive Systems: Fundamentals Through Simulations, John Wiley & Sons, Inc., 2000. 25. R.R. Yager, D.P. Filev, Approximate clustering via the mountain method, IEEE Trans. Systems Man Cybernet. 24 (1994) 1279–1284.
|