|
1. N. Bansal, M. Sviridenko. New Approximability and Inapproximability results for 2-dimensional bin packing. In Proc. 15th Symposium on Discrete Algorithms (SODA 04), 196-203, 2004. 2. N. Bansal, A. Caprara, M. Sviridenko. A New Approximation Method for Set Covering Problems, with Applications to Multidimensional Bin Packing. SIAM Journal on Computing, 39(4):1256-1278, 2010. 3. M.A. Boschetti. New lower bounds for the three-dimensional finite bin packing problem. Discrete Applied Mathematics, 140:241-58, 2004. 4. JM. Bourjolly, V. Rebetez. An analysis of lower bounds procedures for the bin packing problem. Computers & Operations Research, 32:395-405, 2005. 5. J. Carlier, F. Clautiaux, A. Moukrim. New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation. Computers & Operations Research, 34:2223-2250, 2007. 6. J. Carlier, E. N’eron. Computing redundant resources for the resource constrained project scheduling problem. European Journal of Operational Research, 176(3):1452-1463, 2007. 7. A. Caprara. Packing 2-Dimensional Bins in Harmony. In Proc. 43rd IEEE Annu. Found. Comp. Sci. (FOCS 02), 490-499, 2002. 8. A. Caprara. Packing d-Dimensional Bins in d Stages. Mathematics of Operations Research, 33(1):203-215, 2008. 9. M. Chlebík, J. Chlebíková. Inapproximability results for orthogonal rectangle packing problems with rotations, In Proc. 6th Italian Conference on Algorithms and Complexity (CIAC 06), 199-210, 2006. 10. F. Clautiaux, C. Alves, J.V. de Carvalho. A survey of dual feasible and superadditive functions. Annals Operation Research, 179:317-342, 2010. 11. F. Clautiaux, A. Jouglet, J.E. Hayek. A new lower bound for the non-oriented two-dimensional bin-packing problem. Operations Research Letters, 35:365-373, 2007. 12. F. Clautiaux, A. Moukrim, J. Carlier. New data-dependent dual-feasible functions and lower bounds for a two dimensional bin-packing problem. International Journal of Production Research, 47(2):537-560, 2009. 13. E.G. Coffman Jr., M.R. Garey, D.S. Johnson. Approximation algorithms for bin-packing: a survey. In D.S. Hochbaum (ed.) Approximaiton algorithms for NP-hard problems, 46-93, PWS Publishing, Boston MA, 1997. 14. J. R. Correa, C. Kenyon. Approximation Schemes for Multidimensional Packing. In Proc. 15th Symposium on Discrete Algorithms (SODA 04), 179-188, 2004. 15. T.G. Crainic, G. Perboli, M. Pezzuto, R. Tadei. Computing the asymptotic worst-case of bin packing lower bounds. European Journal of Operational Re-search, 183:1295-1303, 2007. 16. M. Dell’Amico, S. Martello, D. Vigo. A lower bound for the non-oriented two-dimensional bin packing problem. Discrete Applied Mathematics, 118:13-24, 2002. 17. S.P. Fekete, J. Schepers. New classes of fast lower bounds for bin packing prob-lems. Mathematics Programming, 91:11-31, 2001. 18. S.P. Fekete, J. Schepers. A general framework for bounds for higher-dimensional orthogonal packing problems. Mathematical Methods of Operations Research, 60:311-29, 2004. 19. W. Fernandez de la Vega, G.S. Lueker. Bin-packing can be solved within 1+ε in linear time. Combinatorica, 1:349-355, 1981. 20. M.R. Garey, D.S. Johnson. Computers and intractability: a guide to the theory of NP- completeness. W.H. Freeman and Co., New York, 1979. 21. D.S. Johnson. Near-optimal bin packing algorithms. Dissertation, Massachusetts Insititute of Technology, Cambridge, Massachusetts, 1973. 22. N. Karmarkar, R.M. Karp. An efficient approximation scheme for the one-dimensional bin packing problem. In Proc. 23rd IEEE Annu. Found. Comp. Sci. (FOCS 82), 312-320, 1982. 23. B.H. Korte, J. Vygen. Combinatorial Optimization Theory and Algorithms (Chap-ter 18). Springer, 2008. 24. M. Labbe, G. Laporte, Mercure. Capacitated vehicle routing on trees. Operations Research, 39:616-22, 1991. 25. J. Y-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, F. Y.L. Chin. Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3): 271-275, 1990. 26. G.S. Lueker. Bin packing with items uniformly distributed over intervals [a,b]. In Proc. 24th IE- EE Annu. Found. Comp. Sci. (FOCS 83), 289-297, 1983. 27. A. Lodi, S. Martello, M. Monaci. Two-dimensional packing problems: A survey. European Journal of Operational Research, 141: 241-252, 2002. 28. S. Martello, D. Pisinger, D. Vigo. The three-dimensional bin packing problem. Operations Research, 48(2):256-267, 2000. 29. S. Martello, D. Vigo. Exact solution of the two-dimensional finite bin packing problem. Management Science, 44:388-99, 1998. 30. S. Martello, P. Toth. Knapsack problems: algorithms and computer implementa-tions. John Wiley & Sons, Chichester, U.K., 1990. 31. S. Martello, P. Toth. Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics, 28:59-70, 1990. 32. J. Rietz, C. Alves, J.M. Valerio. Theoretical investigations on maximal dual feasible functions. Operations Research Letters, 38:174-178, 2010. 33. A. Scholl, R.Klein, C. Jurgens. BISON: A fast hybrid procedure for exactly solv-ing the one-dimensional bin packing problem. Computers & Operations Research, 24:627-645, 1997. 34. S.S. Seiden, R. van Stee. New bounds for multi-dimensional packing. Algorithmica, 36: 261-293, 2003. 35. V.V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.
|