帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林娉婷
作者(外文):Lin, Ping Ting
論文名稱(中文):多重服務之工廠選址問題
論文名稱(外文):The Multi-service Facility Location Problem
指導教授(中文):廖崇碩
指導教授(外文):Liao, Chung Shou
口試委員(中文):林春成
林清池
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:102034519
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:27
中文關鍵詞:工廠選址多重服務近似演算法
外文關鍵詞:facility locationmulti-serviceapproximation algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:838
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們提出了著名的工廠選址問題的衍生,稱為多重服務之工廠選址問題。在此問題中,每個工廠能夠提供多種不同的服務,而每個客戶對不同的服務有不同的需求,此問題的目標是找到一個開啟工廠的位置集合,決定其中提供的服務給相對應的客戶,使得所有客戶的需求皆被滿足,並且最小化總成本,包括開啟工廠的成本、提供服務的成本及運輸成本。為了解決此問題,我們修改了區域搜尋啟發式演算法,並且提出了一個近似演算法和理論分析,在本研究中,證明了我們提出的演算法所得到的結果最差不會大於三倍的最佳解,並且將演算法實作,透過實驗結果驗證了我們的演算法的效率和有效性。
We propose a generalization of the well-known facility location problem, called the multi-service facility location problem. In this problem, each facility has the ability to provide at most p kinds of distinct services, and each client has different requirements from the p kinds of services. The objective is to select a subset of facilities and to identify its corresponding service assignment to clients such that the requirements of each client can be satisfied, and the total cost, including the facility setup cost, service cost and connection cost is minimized. To solve this problem, we modify a local search heuristic algorithm, and present an approximation algorithm with theoretical analysis. In this study, we prove that our algorithm has a locality gap of 3 for this problem. We also implement the algorithm and the experimental result demonstrates its efficiency and effectiveness.
摘要
Abstract
誌謝
Contents
List of Figures and Tables
1. Introduction
2. Preliminaries
2.1. Related Previous Studies
2.2. Local Search Heuristic Algorithm
3. The Multi-service Facility Location Algorithm
3.1. Find an Initial Solution
3.2. Multi-service Local Search Heuristic Algorithm
3.3. The Analysis
4. Experimental Result
4.1 Instances
4.2 Results
5. Conclusions and Future work
References
1. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit.
Local search heuristics for k-median and facility location problems. SIAM J.
Comput., (2004), 33(3), pp. 544-562.
2. J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. SIAM Journal on Computing,
(2010), 39(6), pp. 2212-2231.
3. M. Charikar, and S. Guha. Improved combinatorial algorithms for the facility
location and k-median problems. In Foundations of Computer Science, 1999.
40th Annual Symposium on. IEEE, (1999), pp. 378-388.
4. F. A. Chudak, and D. B. Shmoys. Improved approximation algorithms for
the uncapacitated facility location problem. SIAM Journal on Computing,
(2003), 33(1), pp. 1-25.
5. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. (2015).
http://www.gurobi.com
6. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, (1999), 31(1), pp. 228-248.
7. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy
facility location algorithms analyzed using dual fitting with factor-revealing
LP. Journal of the ACM (JACM), (2003), 50(6), pp. 795-824.
8. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility
location problems. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing. ACM, (2002), pp. 731-740.
9. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian
relaxation. Journal of the ACM (JACM), (2001), 48(2), pp. 274-296.
10. Y. A. Kochetov and E. N. Goncharov. Probabilistic tabu search algorithm
for the multi-stage uncapacitated facility location problem. In Operations
Research, Proceedings Springer Berlin Heidelberg, (2001), pp. 65-70.
11. M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search
heuristic for facility location problems. Journal of algorithms, (2000), 37(1),
146-188.
12. S. Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Information and Computation, (2013), 222, pp. 45-58.
13. M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric
facility location problems. SIAM Journal on Computing, (2006), 36(2), pp.
411-432.
14. J. Plesnik. A heuristic for the p-center problems in graphs. Discrete Applied
Mathematics, (1987), 17(3), pp. 263-268.
15. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the twenty-ninth annual ACM sym-
posium on Theory of computing. ACM, (1997), pp. 265-274.
16. M. Sviridenko. An improved approximation algorithm for the metric uncapacitated
facility location problem. In Integer programming and combinatorial
optimization. Springer Berlin Heidelberg, (2002), pp. 240-257.
17. H. I. Yu and C. C. Li. The Multi-Service Center Problem. In Algorithms and
Computation, Springer Berlin Heidelberg, (2012), pp. 578-587.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *