|
[1] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal of Computer and System Sciences, (2008), 74, pp. 97– 114. [2] A. Bar-Noy and B. Schieber. The Canadian traveller problem. In Proc. of the 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), (1991), pp. 261–270. [3] S. Ben-David and A. Borodin. A new measure for the study of online algorithms. Algorithmica, (1994), 11(1), pp. 73–91. [4] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, Cambridge, (1998). [5] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University, (1976). [6] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, (1959), 1(1), pp. 269–271. [7] D. Eppstein. Finding the k shortest paths. Society for Industrial and Applied Mathematics Journal on Computing (SICOMP), (1998), 28(2), pp. 652–673. [8] A. Gy¨orgy, T. Linder, G. Lugosi and G. Ottucs´ak. The on-line shortest path problem under partial monitoring. Journal of Machine Learning Research, (2007), 8, pp. 2369–2403. [9] L. H¨ame and H. Hakula. Dynamic journeying under uncertainty. European Journal of Operational Research, (2013), 225(3), pp.455–471. [10] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer and System Sciences, (2005), 71, pp. 291–307. [11] K.H. Kao, J.M. Chang, Y.L. Wang and J.S.T. Juan. A Quadratic Algorithm for Finding Next-to-Shortest Paths in Graphs. Algorithmica, (2011), 61, pp.402–418. [12] D. Karger and E. Nikolova. Exact algorithms for the Canadian traveller problem on paths and trees. Technical report, MIT Computer Science & Artificial Intelligence Lab, (2008). URL http://hdl.handle.net/1721.1/40093. [13] I. Krasikov and S.D. Noble. Finding next-to-shortest paths in a graph. Information Processing Letters, (2004), 92, pp.117–119. [14] K.N. Lalgudi and M.C. Papaefthymiou. Computing strictly-second shortest paths. Information Processing Letters, (1997), 63, pp.177–181. [15] G. Laporte. What you should know about the vehicle routing problem. Naval Research Logistics (2007), 54(8), pp.811–819. [16] G. Laporte. Fifty years of vehicle routing. Tranportation Science (2009), 43(4), pp.408–416. [17] A. Larsen, O.B.G. Madsen, and M.M. Solomon. The a priori dynamic traveling salesman problem with time windows. Transportation Science, (2004), 38(4), pp.459–472. [18] A. Larsen, O.B.G. Madsen, and M.M. Solomon. Recent Developments in Dynamic Vehicle Routing Systems. In: B. Golden, S. Raghavan, and E. Wasil (Eds.), The Vehicle Routing Problem: Latest Advances and New Challenges, Operations Research/Computer Science Interfaces, Springer Science Publishers, (2008), 43, pp.199–218. [19] S. Li, G. Sun and G. Chen. Improved algorithm for finding next-toshortest paths. Information Processing Letters, (2006), 99, pp.192–194. [20] C.H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science, (1991), 84(1), pp. 127–150. 32 [21] V. Pillac, M. Gendreau, C. Gu´eret, and A.L. Medaglia. A review of dynamic vehicle routing problems. European Journal of Operational Research, (2013), 225(1), pp.1–11. [22] H.E. Psaraftis. Dynamic vehicle routing problems. In: B. Golden, A. Assas (Eds.), Vehicle Routing: Methods and Studies, Elsevier Science Publishers, (1988), pp.223–248. [23] H.E. Psaraftis, J.N. Tsitsiklis. Dynamic shortest paths in acyclic networks with markovian arc costs. Operations Research, (1993), 41(1), pp.91–101. [24] D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, (1985), 28, pp. 202–208. [25] B. Su and Y.F. Xu. Online recoverable Canadian traveller problem. In Proc. of the International Conference on Management Science and Engineering, (2004), pp.633–639. [26] B. Su, Y.F. Xu, P. Xiao, and L. Tian. A risk-reward competitive analysis for the recoverable Canadian traveller problem. In Proc. of the 2nd Conference on Combinatorial Optimization and Applications (COCOA), (2008), LNCS 5165, pp. 417–426. [27] B.W. Thomas and Chelsea C. White III. Anticipatory route selection. Transportation Science, (2004), 38(4), pp.473–487. [28] B.W. Thomas and Chelsea C. White III. The dynamic shortest path problem with anticipation. European Journal of Operational Research, (2007), 176, pp.836–854. [29] S. Westphal. A note on the k-Canadian traveller problem. Information Processing Letters, (2008), 106, pp. 87–89. [30] Y.F. Xu, M.L. Hu, B. Su, B.H. Zhu, and Z.J. Zhu. The Canadian traveller problem and its competitive analysis. Journal of combinatorial optimization, (2009), 18, pp.195–205. [31] H. Zhang and Y.F. Xu. The k-Canadian traveller problem with communication. In Proc. of the 5th International Frontiers of Algorithmics Workshop (FAW-AAIM), (2011), LNCS 6681, pp. 17–28. 34 |