|
[1] Nurjahan Begum, Liudmila Ulanova, Jun Wang, and Eamonn Keogh. 2015. Accelerating Dynamic Time Warping Clustering with a Novel Admissible Pruning Strategy. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 15). ACM, New York, NY, USA, 4958. DOI: http://dx.doi.org/10.1145/2783258.2783286 [2] S. Brecheisen, H. P. Kriegel, and M. Pfeifle. 2004. Efficient density-based clustering of complex objects. In Data Mining, 2004. ICDM 04. Fourth IEEE International Conference on. 4350. DOI: http://dx.doi.org/10.1109/ICDM.2004.10082 [3] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo Batista. 2015. The UCR Time Series Classification Archive. (July 2015). [4] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 15421552. DOI: http://dx.doi.org/10.14778/1454159.1454226 33 [5] Martin Ester, Hans-Peter Kriegel, Jo rg Sander, and Xiaowei Xu. 1996. A density- based algorithm for discovering clusters in large spatial databases with noise. AAAI Press, 226231. [6] Jyh-Shing Roger Jang. 2016. Machine Learning Toolbox. available at http://mirlab.org/jang/matlab/toolbox/machineLearning. accessed on Dec 10, 2016. [7] Leonard Kaufman and Peter J. Rousseeuw. 2009. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley. [8] Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact Indexing of Dynamic Time Warping. Knowl. Inf. Syst. 7, 3 (March 2005), 358386. DOI: h p://dx.doi.org/10.1007/s10115-004-0154-9 [9] Stephen Kokoska and Daniel Zwillinger. 2000. CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall / CRC. [10] P. D. Kovesi. 2000. MATLAB and Octave Functions for Computer Vision and Image Processing. (2000). http://www.peterkovesi.com/matlabfns/. [11] J. MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. University of California Press, Berkeley, Calif., 281297. http://projecteuclid.org/euclid.bsmsp/1200512992 [12] Son T. Mai, Ira Assent, and Martin Storgaard. 2016. AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 16). ACM, New York, NY, USA, 10251034. DOI: http://dx.doi.org/10.1145/2939672.2939750 [13] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn 34 Keogh. 2012. Searching and Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 12). ACM, New York, NY, USA, 262270. DOI: http://dx.doi.org/10.1145/2339530.2339576 [14] William M. Rand. 1971. Objective Criteria for the Evaluation of Clustering Methods. J. Amer. Statist. Assoc. 66, 336 (1971), 846850. DOI: http://dx.doi.org/10.1080/01621459.1971.10482356 arXiv: http://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356 [15] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find of density peaks. Science 344, 6191 (Jun 2014), 14921496. DOI: http://dx.doi.org/10.1126/science.1242072 [16] Jin Shieh and Eamonn Keogh. 2008. iSAX: Indexing and Mining Terabyte Sized Time Series. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 08). ACM, New York, NY, USA, 623631. DOI: http://dx.doi.org/10.1145/1401890.1401966 [17] Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case. 289297.DOI:http://dx.doi.org/10.1137/1.9781611974010.33arXiv:http://epubs .siam.org/doi/pdf/10.1137/1.9781611974010.33 [18] Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Eamonn Keogh. 2003. Indexing Multi-dimensional Time-series with Support for Multiple Distance Measures. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and DataMining (KDD 03). ACM, New York, NY, USA, 216225. DOI: http://dx.doi.org/10.1145/956750.956777 35 [19] Yuan Yuan, Yi-Ping Phoebe Chen, Shengyu Ni, Augix Guohua Xu, Lin Tang, Martin Vingron, Mehmet Somel, and Philipp Khaitovich. 2011. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinformatics 12, 1 (2011), 347. DOI: http://dx.doi.org/10.1186/1471- 2105- 12- 347 [20] KDD CUP 2017 website https:tianchi.aliyun.com/competition/information.htm? spm=5176.100067.5678.2.8CnCPt&raceId=231597 |