帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林千芷
作者(外文):Lin, Chien-Chih
論文名稱(中文):在壓縮感知上使用隨機漫步之近似模型演算法
論文名稱(外文):Approximating Model-based Compressive Sensing via Random Walks
指導教授(中文):廖崇碩
指導教授(外文):Liao, Chung-Shou
口試委員(中文):黃文良
呂俊賢
韓永楷
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034502
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:26
中文關鍵詞:壓縮感知隨機漫步譜聚類
外文關鍵詞:Compressive sensingRandom walkSpectral clustering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:472
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在壓縮感知這個領域中,我們嘗試一個模型架構來解決稀疏還原問題,透過這樣的概念可以減少所需的測量數量來還原稀疏訊號。我們參考 [Hegde, Indyk, and Schmidt, SODA 2014, pp. 1544--1561 and ICML 2015, pp. 928--937] 中提出關於稀疏結構的圖形模型,並使用隨機漫步的方法來尋找非零位置以改善最著名的CoSaMP演算法。再利用譜聚類的方法讓我們在某些稀疏模型下可以得到更好的還原效果。另外,我們的實驗結果也顯示我們所提出的演算法確實有得到更好的結果。我們也提供理論分析證明出我們的演算法可以達到收斂的效果。無論是從理論上或者是實務上的觀點,都可以看出我們的演算法可以在各種應用上明顯的減少儲存空間。
We consider the model-based compressive sensing framework for sparse recovery, which can reduce the number of required measurements to recover sparse signals. We refer to the graphical model proposed in [Hegde, Indyk, and Schmidt, SODA 2014, pp. 1544--1561 and ICML 2015, pp. 928--937] for sparsity structures, and improve the best known CoSaMP algorithm by using random walks to identify supports. Based on such spectral clustering technique, our approach can perform better in some sparsity models. Moreover, the experimental results demonstrate the usefulness of the proposed recovery algorithm. We also provide theoretical analysis to show its fast convergence. From both theoretical and practical perspectives, our algorithm can significantly reduce the storage space required for a variety of applications.
摘要 I
Abstract II
誌謝 III
Contents IV
List of Figures and Tables V
1 Introduction 1
1.1 Preliminary 1
1.2 Sparse recovery revisited 3
1.2.1 Model projection 3
1.2.2 Approximating model projection 4
1.3 Contribution 5
2 Proposed algorithm 7
2.1 Node-weighted model (NWM) 7
2.2 New recovery algorithm 9
2.2.1 Head approximation algorithm 11
2.2.2 Tail approximation algorithm 13
3 Analysis 15
4 Experiments 18
5 Concluding Remarks 24
References 24

[1] E. Candes, M. Rudelson, R. Vershynin and T. Tao, "Error correction via linear programming," IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 295--308, 2005.
[2] E. Candes, "Compressive sensing," in Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433--1452, 2006.
[3] E. Candes, and T. Tao, "Near optimal signal recovery from random projections: universal encoding strategies?" IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406--5425, 2006.
[4] R. Baraniuk, "Compressive sensing," IEEE Signal Processing Magazine, vol.24, no. 4, pp. 118--120, 124, 2007.
[5] E. Candes and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21--30, 2008.
[6] C. Hegde, P. Indyk, and L. Schmidt, "A fast approximation algorithm for tree-sparse recovery," IEEE International Symposium on Information Theory (ISIT), pp. 1842--1846, 2014.
[7] C. Hegde, P. Indyk, and L. Schmidt, "Approximation algorithms for model-based compressive sensing," IEEE Transactions on Information Theory, vol.61, no. 9, pp. 5129--5147, 2015. Also appeared in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1544--1561,2014.
[8] C. Hegde, P. Indyk, and L. Schmidt, "Nearly linear-time model-based com-pressive sensing," in Automata, Languages, and Programming (ICALP), vol.8572 of Lecture Notes in Computer Science, pp. 588--599, 2014.
[9] C. Hegde, P. Indyk, and L. Schmidt, "A nearly-linear time framework for graph-structured sparsity," JMLR Workshop and Conference Proceedings, vol.37, 2015. Also appeared in Proceedings of the 32nd International Conference on Machine Learning (ICML), pp. 928--937, 2015.
[10] C. Hegde, P. Indyk, and L. Schmidt, "Fast algorithms for structured spar-sity," Bulletin of the European Association for Theoretical Computer Science(EATCS)(invited tutorial paper), no. 117,pp. 197--228, 2015.
[11] D. Needell and J. A. Tropp, "CoSaMP: iterative signal recovery from in-complete and inaccurate samples," Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301--321, 2009.
[12] W. Xu, E. Mallada, and A. Tang, "Compressive sensing over graphs," in Proc.IEEE INFOCOM, pp. 2087--2095, 2011.
[13] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, "Model-based compressive sensing," IEEE Transactions on Information Theory, vol. 56, no.4, pp. 1982--2001, 2010.
[14] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, "Ecient and robust compressed sensing using optimized expander graphs," IEEE Transactions on Information Theory, vol. 55, no. 9, pp. 4299--4308, 2009.
[15] R. Berinde, A. Gilbert, P. Indyk, H. Karlo , and M. Strauss, "Combining geometry and combinatorics: a uni ed approach to sparse signal recovery," in 46th Annual Allerton Conference on Communication, Control, and Computing,pp. 798--805, 2008.
[16] J. Huang, T. Zhang, and D. Metaxas, "Learning with structured sparsity," in the Journal of Machine Learning Research, vol. 12, pp. 3371--3412, 2011.
[17] V. Cevher , M. F. Duarte, C. Hegde, and R. G. Baraniuk, "Sparse signal recovery using markov random elds," in Advances in Neural Information Processing Systems 21 (NIPS), pp. 257--264, 2009.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *